Review
BibTex RIS Cite

Year 2025, Volume: 8 Issue: 4, 1035 - 1049, 31.12.2025
https://doi.org/10.35208/ert.1531974

Abstract

References

  • B. Graver, D. Rutherford, and S. Zheng, “CO2 Emissions from Commercial Aviation: 2013, 2018, and 1029,” International Council on Clean Transportation, Oct. 2020. [Online]. Available: https://theicct.org/publication/co2-emissions-from-commercial-aviation-2013-2018-and-2019/
  • A. R. Goetz, “Air passenger transportation and growth in the US urban system, 1950–1987,” Growth and Change, vol. 23, no. 2, pp. 217–238, 1992, doi:10.1111/j.1468-2257.1992.tb00580.x.
  • IEA, “Energy intensity of commercial passenger aviation in the Net Zero Scenario, 2000-2030.” [Online]. Available: https://www.iea.org/data-and-statistics/charts/energy-intensity-of-commercial-passenger-aviation-in-the-net-zero-scenario-2000-2030
  • ICAO Environment, “Environmental Protection.” [Online]. Available: https://www.icao.int/environmental-protection/Pages/default.aspx
  • ATAG, “Waypoint 2050,” Sep. 2021. Accessed: Feb. 14, 2024. [Online]. Available: https://aviationbenefits.org/environmental-efficiency/climate-action/waypoint-2050/
  • EA, “World Energy Outlook 2012 – Analysis,” IEA. Accessed: Feb. 12, 2024. [Online]. Available: https://www.iea.org/reports/world-energy-outlook-2012
  • N. Yilmaz and A. Atmanli, “Sustainable alternative fuels in aviation,” Energy, vol. 140, pp. 1378–1386, 2017, doi:10.1016/j.energy.2017.07.077.
  • World Energy Council, “World Energy Scenarios | 2019: Exploring Innovation Pathways to 2040,” Sep. 2019. Accessed: Feb. 13, 2024. [Online]. Available: https://www.worldenergy.org/publications/entry/world-energy-scenarios-2019-exploring-innovation-pathways-to-2040
  • M. A. Hasan, A. A. Mamun, S. M. Rahman, K. Malik, M. I. U. Al Amran, A. N. Khondaker, O. Reshi, S. P. Tiwari, and F. S. Alismail, “Climate Change Mitigation Pathways for the Aviation Sector,” Sustainability, vol. 13, no. 7, p. 3656, 2021, doi:10.3390/su13073656.
  • D. L. Daggett, R. C. Hendricks, R. Walther, and E. Corporan, “Alternate Fuels for Use in Commercial Aircraft,” E-16044-1, Apr. 2008. Accessed: Feb. 17, 2024. [Online]. Available: https://ntrs.nasa.gov/citations/20080018472
  • R. W. Jenkins, M. Munro, S. Nash, and C. J. Chuck, “Potential renewable oxygenated biofuels for the aviation and road transport sectors,” Fuel, vol. 103, pp. 593–599, 2013, doi:10.1016/j.fuel.2012.08.019.
  • IEA, “Share of oil final consumption by sector, 2019,” IEA, Paris. [Online]. Available: https://www.iea.org/data-and-statistics/charts/share-of-oil-final-consumption-by-sector-2019
  • P. Su-Ungkavatin, L. Tiruta-Barna, and L. Hamelin, “Biofuels, electrofuels, electric or hydrogen?: A review of current and emerging sustainable aviation systems,” Progress in Energy and Combustion Science, vol. 96, p. 101073, 2023, doi:10.1016/j.pecs.2023.101073.
  • J. Bosch, S. De Jong, R. Hoefnagels, and R. Slade, “Aviation biofuels: strategically important, technically achievable, tough to deliver,” Imperial College London, 2017.
  • C. J. Chuck, Ed., ‘Chapter 1 - The Prospects for Biofuels in Aviation’, in Biofuels for Aviation, Academic Press, 2016. doi: 10.1016/B978-0-12-804568-8.00016-0.
  • C. J. Chuck, Ed., ‘Chapter 2 - Feedstocks for Aviation Biofuels’, in Biofuels for Aviation, Academic Press, 2016. doi: 10.1016/B978-0-12-804568-8.00016-0.
  • J. Li, R. Zhao, Y. Xu, X. Wu, S. R. Bean, and D. Wang, “Fuel ethanol production from starchy grain and other crops: An overview on feedstocks, affecting factors, and technical advances,” Renewable Energy, vol. 188, pp. 223–239, 2022.
  • T. Solakivi, A. Paimander, and L. Ojala, “Cost competitiveness of alternative maritime fuels in the new regulatory framework,” Transportation Research Part D: Transport and Environment, vol. 113, p. 103500, 2022, doi:10.1016/j.trd.2022.103500.
  • ICAO, ‘ICAO global framework for aviation alternative fuels’, 2022.
  • European Comission, ‘Proposal for a regulation of the European Parliament and of the Council on ensuring a level playing field for sustainable air transport’, 2021.
  • ATAG, ‘Commitment to fly net zero’, 2021.
  • V. Balan, “Current challenges in commercially producing biofuels from lignocellulosic biomass,” International Scholarly Research Notices, vol. 2014, p. 463074, 2014.
  • S. H. Gheewala, B. Damen, and X. Shi, “Biofuels: economic, environmental and social benefits and costs for developing countries in Asia,” Wiley Interdisciplinary Reviews: Climate Change, vol. 4, no. 6, pp. 497–511, 2013.
  • S. Karatzos, J. McMillan, and J. N. Saddler, “The potential and challenges of drop-in biofuels,” Report for IEA Bioenergy Task 39, 2014. [Online]. Available: https://task39.sites.olt.ubc.ca/files/2014/01/Task-39-Drop-in-Biofuels-Report-FINAL-2-Oct-2014-ecopy.pdf
  • K. M. Holmgren, T. S. Berntsson, E. Andersson, and T. Rydberg, “Comparison of integration options for gasification-based biofuel production systems–Economic and greenhouse gas emission implications,” Energy, vol. 111, pp. 272–294, 2016, doi:10.1016/j.energy.2016.05.059.
  • H. R. Guimaraes, J. M. Bressanin, I. L. Motta, M. F. Chagas, B. C. Klein, A. Bonomi, and M. D. B. Watanabe, “Bottlenecks and potentials for the gasification of lignocellulosic biomasses and Fischer-Tropsch synthesis: A case study on the production of advanced liquid biofuels in Brazil,” Energy Conversion and Management, vol. 245, p. 114629, 2021.
  • A. Arias, C. E. Nika, V. Vasilaki, G. Feijoo, M. T. Moreira, and E. Katsou, “Assessing the future prospects of emerging technologies for shipping and aviation biofuels: A critical review,” Renewable and Sustainable Energy Reviews, vol. 197, p. 114427, 2024.
  • A. Nilsson, K. Shabestary, M. Brandão, and E. P. Hudson, “Environmental impacts and limitations of third‐generation biobutanol: Life cycle assessment of n‐butanol produced by genetically engineered cyanobacteria,” Journal of Industrial Ecology, vol. 24, no. 1, pp. 205–216, 2020.
  • C. Van Der Giesen, S. Cucurachi, J. Guinée, G. J. Kramer, and A. Tukker, “A critical view on the current application of LCA for new technologies and recommendations for improved practice,” Journal of Cleaner Production, vol. 259, p. 120904, 2020.
  • E. Sevigné-Itoiz, O. Mwabonje, C. Panoutsou, and J. Woods, “Life cycle assessment (LCA): informing the development of a sustainable circular bioeconomy?,” Philosophical Transactions of the Royal Society A, vol. 379, no. 2206, p. 20200352, 2021.
  • C. Panoutsou, S. Germer, P. Karka, S. Papadokostantakis, Y. Kroyan, M. Wojcieszyk, and I. Landalv, “Advanced biofuels to decarbonise European transport by 2030: Markets, challenges, and policies that impact their successful market uptake,” Energy Strategy Reviews, vol. 34, p. 100633, 2021.
  • A. Dufey, Biofuels production, trade and sustainable development: emerging issues, IIED, 2006.
  • I. Ridjan, B. V. Mathiesen, and D. Connolly, “Terminology used for renewable liquid and gaseous fuels based on the conversion of electricity: a review,” Journal of Cleaner Production, vol. 112, pp. 3709–3720, 2016.
  • A. Goldmann, W. Sauter, M. Oettinger, T. Kluge, U. Schröder, J. Seume, J. R. Friedrichs, and F. Dinkelacker, “A study on electrofuels in aviation,” Energies, vol. 11, no. 2, p. 392, 2018.
  • M. Lehtveer, S. Brynolf, and M. Grahn, “What future for electrofuels in transport? Analysis of cost competitiveness in global climate mitigation,” Environmental Science & Technology, vol. 53, no. 3, pp. 1690–1699, 2019, doi:10.1021/acs.est.8b05243.
  • R. Raman, S. Gunasekar, L. D. Dávid, A. F. Rahmat, and P. Nedungadi, “Aligning sustainable aviation fuel research with sustainable development goals: Trends and thematic analysis,” Energy Reports, vol. 12, pp. 2642–2652, 2024, doi:10.1016/j.egyr.2024.08.076.
  • S. Ahmad, J. Ouenniche, B. W. Kolosz, P. Greening, J. M. Andresen, M. M. Maroto-Valer, and B. Xu, “A stakeholders’ participatory approach to multi-criteria assessment of sustainable aviation fuels production pathways,” International Journal of Production Economics, vol. 238, p. 108156, 2021, doi:10.1016/j.ijpe.2021.108156.
  • J. Ahlström, Y. Jafri, E. Wetterlund, and E. Furusjö, “Sustainable aviation fuels–Options for negative emissions and high carbon efficiency,” International Journal of Greenhouse Gas Control, vol. 125, p. 103886, 2023, doi:10.1016/j.ijggc.2023.103886.
  • The Faraday Institute, “Faraday Report: High-Energy Battery Technologies,” The Faraday Institute, 2020. [Online]. Available: https://www.faraday.ac.uk/wp-content/uploads/2020/01/High-Energy-battery-technologies-FINAL.pdf
  • N. Yilmaz and A. Atmanli, “Sustainable alternative fuels in aviation,” Energy, vol. 140, pp. 1378–1386, 2017, doi:10.1016/j.energy.2017.07.077.
  • Roland Berger, ‘Hydrogen: A future fuel for aviation?’, Roland Berger. Accessed: Mar. 13, 2024. [Online]. Available: https://www.rolandberger.com/en/Insights/Publications/Hydrogen-A-future-fuel-for-aviation.html
  • E. J. Adler and J. R. Martins, “Hydrogen-powered aircraft: Fundamental concepts, key technologies, and environmental impacts,” Progress in Aerospace Sciences, vol. 141, p. 100922, 2023, doi:10.1016/j.paerosci.2023.100922.
  • C. Marek, T. Smith, and K. Kundu, “Low emission hydrogen combustors for gas turbines using lean direct injection,” in 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Jul. 2005, p. 3776. Accessed: Mar. 13, 2024. [Online]. Available: https://ntrs.nasa.gov/citations/20080002274
  • G. Dahl and F. Suttrop, “Engine control and low-NOx combustion for hydrogen fuelled aircraft gas turbines,” International Journal of Hydrogen Energy, vol. 23, no. 8, pp. 695–704, 1998, doi:10.1016/S0360-3199(97)00115-8.
  • B. Khandelwal, A. Karakurt, P. R. Sekaran, V. Sethi, and R. Singh, “Hydrogen powered aircraft: The future of air transport,” Progress in Aerospace Sciences, vol. 60, pp. 45–59, 2013, doi:10.1016/j.paerosci.2012.12.002.
  • F. Liu, M. Shafique, and X. Luo, “Literature review on life cycle assessment of transportation alternative fuels,” Environmental Technology & Innovation, vol. 32, p. 103343, 2023, doi:10.1016/j.eti.2023.103343.
  • A. Baroutaji, T. Wilberforce, M. Ramadan, and A. G. Olabi, “Comprehensive investigation on hydrogen and fuel cell technology in the aviation and aerospace sectors,” Renewable and Sustainable Energy Reviews, vol. 106, pp. 31–40, 2019, doi:10.1016/j.rser.2019.02.022.
  • M. McManus, Net Zero Aviation Fuels: resource requirements and environmental impacts policy briefing. The Royal Society, 2023. [Online]. Available: https://royalsociety.org/news/2023/02/net-zero-aviation-fuels-report/
  • T. Yusaf, A. S. F. Mahamude, K. Kadirgama, D. Ramasamy, K. Farhana, H. A. Dhahad, and A. R. A. Talib, “Sustainable hydrogen energy in aviation–A narrative review,” International Journal of Hydrogen Energy, vol. 52, pp. 1026–1045, 2024, doi:10.1016/j.ijhydene.2023.02.086.
  • A. Contreras, S. Yiğit, K. Özay, and T. N. Veziroğlu, “Hydrogen as aviation fuel: a comparison with hydrocarbon fuels,” International Journal of Hydrogen Energy, vol. 22, no. 10–11, pp. 1053–1060, 1997, doi:10.1016/S0360-3199(97)00008-6.
  • J. Winnefeld, T. Kadyk, B. Bensmann, U. Krewer, and R. Hanke-Rauschenbach, “Modelling and designing cryogenic hydrogen tanks for future aircraft applications,” Energies, vol. 11, no. 1, p. 105, 2018, doi:10.3390/en11010105.
  • J. Hoelzen, D. Silberhorn, T. Zill, B. Bensmann, and R. Hanke-Rauschenbach, “Hydrogen-powered aviation and its reliance on green hydrogen infrastructure–Review and research gaps,” International Journal of Hydrogen Energy, vol. 47, no. 5, pp. 3108–3130, 2022, doi:10.1016/j.ijhydene.2021.10.239.
  • D. Cecere, E. Giacomazzi, and A. Ingenito, “A review on hydrogen industrial aerospace applications,” International Journal of Hydrogen Energy, vol. 39, no. 20, pp. 10731–10747, 2014, doi:10.1016/j.ijhydene.2014.04.126.
  • D. Verstraete, “On the energy efficiency of hydrogen-fuelled transport aircraft,” International Journal of Hydrogen Energy, vol. 40, no. 23, pp. 7388–7394, 2015,
  • M. Raab and R. U. Dietrich, “Techno-economic assessment of different aviation fuel supply pathways including LH2 and LCH4 and the influence of the carbon source,” Energy Conversion and Management, vol. 293, p. 117483, 2023, doi:10.1016/j.enconman.2023.117483.
  • [56] P. Rompokos, S. Kissoon, I. Roumeliotis, D. Nalianda, T. Nikolaidis, and A. Rolt, “Liquefied natural gas for civil aviation,” Energies, vol. 13, no. 22, p. 5925, 2020, doi:10.3390/en13225925.
  • A. Gangoli Rao, F. Yin, and J. P. van Buijtenen, “A hybrid engine concept for multi-fuel blended wing body,” Aircraft Engineering and Aerospace Technology, vol. 86, no. 6, pp. 483–493, 2014, doi:10.1108/AEAT-04-2014-0054.
  • M. Fasihi, R. Weiss, J. Savolainen, and C. Breyer, “Global potential of green ammonia based on hybrid PV-wind power plants,” Applied Energy, vol. 294, p. 116170, 2021, doi:10.1016/j.apenergy.2020.116170.
  • F. Abbasov, T. Earl, C. C. Ambel, B. Hemmings, and L. Gilliam, “Roadmap to decarbonising European shipping,” Transport & Environment, 2018. [Online]. Available: https://www.transportenvironment.org/wp-content/uploads/2021/07/2018_11_Roadmap_decarbonising_European_shipping.pdf
  • G. Jeerh, M. Zhang, and S. Tao, “Recent progress in ammonia fuel cells and their potential applications,” Journal of Materials Chemistry A, vol. 9, no. 2, pp. 727–752, 2021, doi:10.1039/D0TA08810B.
  • M. Otto, L. Vesely, J. Kapat, M. Stoia, N. D. Applegate, and G. Natsui, “Ammonia as an aircraft fuel: A critical assessment from airport to wake,” ASME Open Journal of Engineering, vol. 2, 2023, doi:10.1115/1.4062626.
  • NREL, ‘Best Research-Cell Efficiency Chart’. Accessed: Mar. 14, 2024. [Online]. Available: https://www.nrel.gov/pv/cell-efficiency.html
  • ] F. Salazar, M. S. Martinez-Garcia, A. de Castro, N. Logroño, M. F. Cazorla-Logroño, J. Guamán-Molina, and C. Gómez, “Optimization of the solar energy storage capacity for a monitoring UAV,” Sustainable Futures, vol. 7, p. 100146, 2024, doi:10.1016/j.sftr.2023.100146.
  • A. Machín and F. Márquez, “Advancements in photovoltaic cell materials: silicon, organic, and perovskite solar cells,” Materials, vol. 17, no. 5, p. 1165, 2024, doi:10.3390/ma17051165.
  • McKinsey, ‘Clean Skies for Tomorrow: Sustainable Aviation Fuels as a Pathway to Net-Zero Aviation’, World Economic Forum, Nov. 2020. [Online]. Available: https://www3.weforum.org/docs/WEF_Clean_Skies_Tomorrow_SAF_Analytics_2020.pdf
  • Boeing, ‘Commercial Market Outlook 2021-2040’, Boeing, 2021. [Online]. Available: https://www.boeing.com/content/dam/boeing/boeingdotcom/market/assets/downloads/CMO%202021%20Report_13Sept21.pdf
  • M. Otto, M. P. Sargunaraj, A. Riahi, and J. Kapat, “A novel long-duration hydrogen storage concept without liquefaction and high pressure suitable for onsite blending,” in Turbo Expo: Power for Land, Sea, and Air, Jun. 2021, vol. 84997, p. V006T03A007, doi:10.1115/GT2021-59393.
  • L. Bock and U. Burkhardt, “Contrail cirrus radiative forcing for future air traffic,” Atmospheric Chemistry and Physics, vol. 19, no. 12, pp. 8163–8174, 2019, doi:10.5194/acp-19-8163-2019.
  • C. Chu, K. Wu, B. Luo, Q. Cao, and H. Zhang, “Hydrogen storage by liquid organic hydrogen carriers: catalyst, renewable carrier, and technology–a review,” Carbon Resources Conversion, vol. 6, no. 4, pp. 334–351, 2023, doi:10.1016/j.crcon.2023.03.007.
  • M. Aziz, A. T. Wijayanta, and A. B. D. Nandiyanto, “Ammonia as effective hydrogen storage: A review on production, storage and utilization,” Energies, vol. 13, no. 12, p. 3062, 2020, doi:10.3390/en13123062.
  • W. Raróg-Pilecka, D. Szmigiel, A. Komornicki, J. Zieliński, and Z. Kowalczyk, “Catalytic properties of small ruthenium particles deposited on carbon. Ammonia decomposition studies,” Carbon, vol. 41, no. 3, pp. 589–591, 2003, doi:10.1016/S0008-6223(02)00393-7.

Sustainable aviation fuels: Evaluating environmental and operational impacts

Year 2025, Volume: 8 Issue: 4, 1035 - 1049, 31.12.2025
https://doi.org/10.35208/ert.1531974

Abstract

Between 2013 and 2018, commercial aviation saw a 70% increase in carbon dioxide (CO2) emissions, significantly outpacing United Nations projections. This alarming trend is anticipated to continue, with emissions potentially tripling by 2050, driven by economic expansion and an increasing dependence on fossil fuels. In 2022, the aviation industry’s energy consumption reached 12.1 MJ/RTK, with projections forecasting a 2.8 to 3.9-fold increase by 2040. Without a strategic shift towards sustainable alternatives, aviation emissions are expected to reach 2,000 megatons by mid-century, posing a severe threat to global climate stability. This study emphasizes the urgent need for the aviation sector to adopt high-energy, reliable alternative fuels that can mitigate its environmental impact. A comprehensive evaluation and comparison of potential alternative fuels are presented, focusing on their energy densities, production processes, and ecological footprints. The research highlights the potential of these alternatives to meet the industry’s energy demands while significantly reducing greenhouse gas emissions. Technological advancements in fuel production and aircraft propulsion are also explored, underscoring their role in achieving meaningful emissions reductions. The study argues that integrating sustainable practices and fostering innovation within the aviation sector is critical for ensuring long-term sustainability and resilience. By transitioning to alternative fuels and embracing new technologies, the aviation industry can address its environmental challenges and lead the way in global efforts to combat climate change and achieve net-zero emissions by 2050.

References

  • B. Graver, D. Rutherford, and S. Zheng, “CO2 Emissions from Commercial Aviation: 2013, 2018, and 1029,” International Council on Clean Transportation, Oct. 2020. [Online]. Available: https://theicct.org/publication/co2-emissions-from-commercial-aviation-2013-2018-and-2019/
  • A. R. Goetz, “Air passenger transportation and growth in the US urban system, 1950–1987,” Growth and Change, vol. 23, no. 2, pp. 217–238, 1992, doi:10.1111/j.1468-2257.1992.tb00580.x.
  • IEA, “Energy intensity of commercial passenger aviation in the Net Zero Scenario, 2000-2030.” [Online]. Available: https://www.iea.org/data-and-statistics/charts/energy-intensity-of-commercial-passenger-aviation-in-the-net-zero-scenario-2000-2030
  • ICAO Environment, “Environmental Protection.” [Online]. Available: https://www.icao.int/environmental-protection/Pages/default.aspx
  • ATAG, “Waypoint 2050,” Sep. 2021. Accessed: Feb. 14, 2024. [Online]. Available: https://aviationbenefits.org/environmental-efficiency/climate-action/waypoint-2050/
  • EA, “World Energy Outlook 2012 – Analysis,” IEA. Accessed: Feb. 12, 2024. [Online]. Available: https://www.iea.org/reports/world-energy-outlook-2012
  • N. Yilmaz and A. Atmanli, “Sustainable alternative fuels in aviation,” Energy, vol. 140, pp. 1378–1386, 2017, doi:10.1016/j.energy.2017.07.077.
  • World Energy Council, “World Energy Scenarios | 2019: Exploring Innovation Pathways to 2040,” Sep. 2019. Accessed: Feb. 13, 2024. [Online]. Available: https://www.worldenergy.org/publications/entry/world-energy-scenarios-2019-exploring-innovation-pathways-to-2040
  • M. A. Hasan, A. A. Mamun, S. M. Rahman, K. Malik, M. I. U. Al Amran, A. N. Khondaker, O. Reshi, S. P. Tiwari, and F. S. Alismail, “Climate Change Mitigation Pathways for the Aviation Sector,” Sustainability, vol. 13, no. 7, p. 3656, 2021, doi:10.3390/su13073656.
  • D. L. Daggett, R. C. Hendricks, R. Walther, and E. Corporan, “Alternate Fuels for Use in Commercial Aircraft,” E-16044-1, Apr. 2008. Accessed: Feb. 17, 2024. [Online]. Available: https://ntrs.nasa.gov/citations/20080018472
  • R. W. Jenkins, M. Munro, S. Nash, and C. J. Chuck, “Potential renewable oxygenated biofuels for the aviation and road transport sectors,” Fuel, vol. 103, pp. 593–599, 2013, doi:10.1016/j.fuel.2012.08.019.
  • IEA, “Share of oil final consumption by sector, 2019,” IEA, Paris. [Online]. Available: https://www.iea.org/data-and-statistics/charts/share-of-oil-final-consumption-by-sector-2019
  • P. Su-Ungkavatin, L. Tiruta-Barna, and L. Hamelin, “Biofuels, electrofuels, electric or hydrogen?: A review of current and emerging sustainable aviation systems,” Progress in Energy and Combustion Science, vol. 96, p. 101073, 2023, doi:10.1016/j.pecs.2023.101073.
  • J. Bosch, S. De Jong, R. Hoefnagels, and R. Slade, “Aviation biofuels: strategically important, technically achievable, tough to deliver,” Imperial College London, 2017.
  • C. J. Chuck, Ed., ‘Chapter 1 - The Prospects for Biofuels in Aviation’, in Biofuels for Aviation, Academic Press, 2016. doi: 10.1016/B978-0-12-804568-8.00016-0.
  • C. J. Chuck, Ed., ‘Chapter 2 - Feedstocks for Aviation Biofuels’, in Biofuels for Aviation, Academic Press, 2016. doi: 10.1016/B978-0-12-804568-8.00016-0.
  • J. Li, R. Zhao, Y. Xu, X. Wu, S. R. Bean, and D. Wang, “Fuel ethanol production from starchy grain and other crops: An overview on feedstocks, affecting factors, and technical advances,” Renewable Energy, vol. 188, pp. 223–239, 2022.
  • T. Solakivi, A. Paimander, and L. Ojala, “Cost competitiveness of alternative maritime fuels in the new regulatory framework,” Transportation Research Part D: Transport and Environment, vol. 113, p. 103500, 2022, doi:10.1016/j.trd.2022.103500.
  • ICAO, ‘ICAO global framework for aviation alternative fuels’, 2022.
  • European Comission, ‘Proposal for a regulation of the European Parliament and of the Council on ensuring a level playing field for sustainable air transport’, 2021.
  • ATAG, ‘Commitment to fly net zero’, 2021.
  • V. Balan, “Current challenges in commercially producing biofuels from lignocellulosic biomass,” International Scholarly Research Notices, vol. 2014, p. 463074, 2014.
  • S. H. Gheewala, B. Damen, and X. Shi, “Biofuels: economic, environmental and social benefits and costs for developing countries in Asia,” Wiley Interdisciplinary Reviews: Climate Change, vol. 4, no. 6, pp. 497–511, 2013.
  • S. Karatzos, J. McMillan, and J. N. Saddler, “The potential and challenges of drop-in biofuels,” Report for IEA Bioenergy Task 39, 2014. [Online]. Available: https://task39.sites.olt.ubc.ca/files/2014/01/Task-39-Drop-in-Biofuels-Report-FINAL-2-Oct-2014-ecopy.pdf
  • K. M. Holmgren, T. S. Berntsson, E. Andersson, and T. Rydberg, “Comparison of integration options for gasification-based biofuel production systems–Economic and greenhouse gas emission implications,” Energy, vol. 111, pp. 272–294, 2016, doi:10.1016/j.energy.2016.05.059.
  • H. R. Guimaraes, J. M. Bressanin, I. L. Motta, M. F. Chagas, B. C. Klein, A. Bonomi, and M. D. B. Watanabe, “Bottlenecks and potentials for the gasification of lignocellulosic biomasses and Fischer-Tropsch synthesis: A case study on the production of advanced liquid biofuels in Brazil,” Energy Conversion and Management, vol. 245, p. 114629, 2021.
  • A. Arias, C. E. Nika, V. Vasilaki, G. Feijoo, M. T. Moreira, and E. Katsou, “Assessing the future prospects of emerging technologies for shipping and aviation biofuels: A critical review,” Renewable and Sustainable Energy Reviews, vol. 197, p. 114427, 2024.
  • A. Nilsson, K. Shabestary, M. Brandão, and E. P. Hudson, “Environmental impacts and limitations of third‐generation biobutanol: Life cycle assessment of n‐butanol produced by genetically engineered cyanobacteria,” Journal of Industrial Ecology, vol. 24, no. 1, pp. 205–216, 2020.
  • C. Van Der Giesen, S. Cucurachi, J. Guinée, G. J. Kramer, and A. Tukker, “A critical view on the current application of LCA for new technologies and recommendations for improved practice,” Journal of Cleaner Production, vol. 259, p. 120904, 2020.
  • E. Sevigné-Itoiz, O. Mwabonje, C. Panoutsou, and J. Woods, “Life cycle assessment (LCA): informing the development of a sustainable circular bioeconomy?,” Philosophical Transactions of the Royal Society A, vol. 379, no. 2206, p. 20200352, 2021.
  • C. Panoutsou, S. Germer, P. Karka, S. Papadokostantakis, Y. Kroyan, M. Wojcieszyk, and I. Landalv, “Advanced biofuels to decarbonise European transport by 2030: Markets, challenges, and policies that impact their successful market uptake,” Energy Strategy Reviews, vol. 34, p. 100633, 2021.
  • A. Dufey, Biofuels production, trade and sustainable development: emerging issues, IIED, 2006.
  • I. Ridjan, B. V. Mathiesen, and D. Connolly, “Terminology used for renewable liquid and gaseous fuels based on the conversion of electricity: a review,” Journal of Cleaner Production, vol. 112, pp. 3709–3720, 2016.
  • A. Goldmann, W. Sauter, M. Oettinger, T. Kluge, U. Schröder, J. Seume, J. R. Friedrichs, and F. Dinkelacker, “A study on electrofuels in aviation,” Energies, vol. 11, no. 2, p. 392, 2018.
  • M. Lehtveer, S. Brynolf, and M. Grahn, “What future for electrofuels in transport? Analysis of cost competitiveness in global climate mitigation,” Environmental Science & Technology, vol. 53, no. 3, pp. 1690–1699, 2019, doi:10.1021/acs.est.8b05243.
  • R. Raman, S. Gunasekar, L. D. Dávid, A. F. Rahmat, and P. Nedungadi, “Aligning sustainable aviation fuel research with sustainable development goals: Trends and thematic analysis,” Energy Reports, vol. 12, pp. 2642–2652, 2024, doi:10.1016/j.egyr.2024.08.076.
  • S. Ahmad, J. Ouenniche, B. W. Kolosz, P. Greening, J. M. Andresen, M. M. Maroto-Valer, and B. Xu, “A stakeholders’ participatory approach to multi-criteria assessment of sustainable aviation fuels production pathways,” International Journal of Production Economics, vol. 238, p. 108156, 2021, doi:10.1016/j.ijpe.2021.108156.
  • J. Ahlström, Y. Jafri, E. Wetterlund, and E. Furusjö, “Sustainable aviation fuels–Options for negative emissions and high carbon efficiency,” International Journal of Greenhouse Gas Control, vol. 125, p. 103886, 2023, doi:10.1016/j.ijggc.2023.103886.
  • The Faraday Institute, “Faraday Report: High-Energy Battery Technologies,” The Faraday Institute, 2020. [Online]. Available: https://www.faraday.ac.uk/wp-content/uploads/2020/01/High-Energy-battery-technologies-FINAL.pdf
  • N. Yilmaz and A. Atmanli, “Sustainable alternative fuels in aviation,” Energy, vol. 140, pp. 1378–1386, 2017, doi:10.1016/j.energy.2017.07.077.
  • Roland Berger, ‘Hydrogen: A future fuel for aviation?’, Roland Berger. Accessed: Mar. 13, 2024. [Online]. Available: https://www.rolandberger.com/en/Insights/Publications/Hydrogen-A-future-fuel-for-aviation.html
  • E. J. Adler and J. R. Martins, “Hydrogen-powered aircraft: Fundamental concepts, key technologies, and environmental impacts,” Progress in Aerospace Sciences, vol. 141, p. 100922, 2023, doi:10.1016/j.paerosci.2023.100922.
  • C. Marek, T. Smith, and K. Kundu, “Low emission hydrogen combustors for gas turbines using lean direct injection,” in 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Jul. 2005, p. 3776. Accessed: Mar. 13, 2024. [Online]. Available: https://ntrs.nasa.gov/citations/20080002274
  • G. Dahl and F. Suttrop, “Engine control and low-NOx combustion for hydrogen fuelled aircraft gas turbines,” International Journal of Hydrogen Energy, vol. 23, no. 8, pp. 695–704, 1998, doi:10.1016/S0360-3199(97)00115-8.
  • B. Khandelwal, A. Karakurt, P. R. Sekaran, V. Sethi, and R. Singh, “Hydrogen powered aircraft: The future of air transport,” Progress in Aerospace Sciences, vol. 60, pp. 45–59, 2013, doi:10.1016/j.paerosci.2012.12.002.
  • F. Liu, M. Shafique, and X. Luo, “Literature review on life cycle assessment of transportation alternative fuels,” Environmental Technology & Innovation, vol. 32, p. 103343, 2023, doi:10.1016/j.eti.2023.103343.
  • A. Baroutaji, T. Wilberforce, M. Ramadan, and A. G. Olabi, “Comprehensive investigation on hydrogen and fuel cell technology in the aviation and aerospace sectors,” Renewable and Sustainable Energy Reviews, vol. 106, pp. 31–40, 2019, doi:10.1016/j.rser.2019.02.022.
  • M. McManus, Net Zero Aviation Fuels: resource requirements and environmental impacts policy briefing. The Royal Society, 2023. [Online]. Available: https://royalsociety.org/news/2023/02/net-zero-aviation-fuels-report/
  • T. Yusaf, A. S. F. Mahamude, K. Kadirgama, D. Ramasamy, K. Farhana, H. A. Dhahad, and A. R. A. Talib, “Sustainable hydrogen energy in aviation–A narrative review,” International Journal of Hydrogen Energy, vol. 52, pp. 1026–1045, 2024, doi:10.1016/j.ijhydene.2023.02.086.
  • A. Contreras, S. Yiğit, K. Özay, and T. N. Veziroğlu, “Hydrogen as aviation fuel: a comparison with hydrocarbon fuels,” International Journal of Hydrogen Energy, vol. 22, no. 10–11, pp. 1053–1060, 1997, doi:10.1016/S0360-3199(97)00008-6.
  • J. Winnefeld, T. Kadyk, B. Bensmann, U. Krewer, and R. Hanke-Rauschenbach, “Modelling and designing cryogenic hydrogen tanks for future aircraft applications,” Energies, vol. 11, no. 1, p. 105, 2018, doi:10.3390/en11010105.
  • J. Hoelzen, D. Silberhorn, T. Zill, B. Bensmann, and R. Hanke-Rauschenbach, “Hydrogen-powered aviation and its reliance on green hydrogen infrastructure–Review and research gaps,” International Journal of Hydrogen Energy, vol. 47, no. 5, pp. 3108–3130, 2022, doi:10.1016/j.ijhydene.2021.10.239.
  • D. Cecere, E. Giacomazzi, and A. Ingenito, “A review on hydrogen industrial aerospace applications,” International Journal of Hydrogen Energy, vol. 39, no. 20, pp. 10731–10747, 2014, doi:10.1016/j.ijhydene.2014.04.126.
  • D. Verstraete, “On the energy efficiency of hydrogen-fuelled transport aircraft,” International Journal of Hydrogen Energy, vol. 40, no. 23, pp. 7388–7394, 2015,
  • M. Raab and R. U. Dietrich, “Techno-economic assessment of different aviation fuel supply pathways including LH2 and LCH4 and the influence of the carbon source,” Energy Conversion and Management, vol. 293, p. 117483, 2023, doi:10.1016/j.enconman.2023.117483.
  • [56] P. Rompokos, S. Kissoon, I. Roumeliotis, D. Nalianda, T. Nikolaidis, and A. Rolt, “Liquefied natural gas for civil aviation,” Energies, vol. 13, no. 22, p. 5925, 2020, doi:10.3390/en13225925.
  • A. Gangoli Rao, F. Yin, and J. P. van Buijtenen, “A hybrid engine concept for multi-fuel blended wing body,” Aircraft Engineering and Aerospace Technology, vol. 86, no. 6, pp. 483–493, 2014, doi:10.1108/AEAT-04-2014-0054.
  • M. Fasihi, R. Weiss, J. Savolainen, and C. Breyer, “Global potential of green ammonia based on hybrid PV-wind power plants,” Applied Energy, vol. 294, p. 116170, 2021, doi:10.1016/j.apenergy.2020.116170.
  • F. Abbasov, T. Earl, C. C. Ambel, B. Hemmings, and L. Gilliam, “Roadmap to decarbonising European shipping,” Transport & Environment, 2018. [Online]. Available: https://www.transportenvironment.org/wp-content/uploads/2021/07/2018_11_Roadmap_decarbonising_European_shipping.pdf
  • G. Jeerh, M. Zhang, and S. Tao, “Recent progress in ammonia fuel cells and their potential applications,” Journal of Materials Chemistry A, vol. 9, no. 2, pp. 727–752, 2021, doi:10.1039/D0TA08810B.
  • M. Otto, L. Vesely, J. Kapat, M. Stoia, N. D. Applegate, and G. Natsui, “Ammonia as an aircraft fuel: A critical assessment from airport to wake,” ASME Open Journal of Engineering, vol. 2, 2023, doi:10.1115/1.4062626.
  • NREL, ‘Best Research-Cell Efficiency Chart’. Accessed: Mar. 14, 2024. [Online]. Available: https://www.nrel.gov/pv/cell-efficiency.html
  • ] F. Salazar, M. S. Martinez-Garcia, A. de Castro, N. Logroño, M. F. Cazorla-Logroño, J. Guamán-Molina, and C. Gómez, “Optimization of the solar energy storage capacity for a monitoring UAV,” Sustainable Futures, vol. 7, p. 100146, 2024, doi:10.1016/j.sftr.2023.100146.
  • A. Machín and F. Márquez, “Advancements in photovoltaic cell materials: silicon, organic, and perovskite solar cells,” Materials, vol. 17, no. 5, p. 1165, 2024, doi:10.3390/ma17051165.
  • McKinsey, ‘Clean Skies for Tomorrow: Sustainable Aviation Fuels as a Pathway to Net-Zero Aviation’, World Economic Forum, Nov. 2020. [Online]. Available: https://www3.weforum.org/docs/WEF_Clean_Skies_Tomorrow_SAF_Analytics_2020.pdf
  • Boeing, ‘Commercial Market Outlook 2021-2040’, Boeing, 2021. [Online]. Available: https://www.boeing.com/content/dam/boeing/boeingdotcom/market/assets/downloads/CMO%202021%20Report_13Sept21.pdf
  • M. Otto, M. P. Sargunaraj, A. Riahi, and J. Kapat, “A novel long-duration hydrogen storage concept without liquefaction and high pressure suitable for onsite blending,” in Turbo Expo: Power for Land, Sea, and Air, Jun. 2021, vol. 84997, p. V006T03A007, doi:10.1115/GT2021-59393.
  • L. Bock and U. Burkhardt, “Contrail cirrus radiative forcing for future air traffic,” Atmospheric Chemistry and Physics, vol. 19, no. 12, pp. 8163–8174, 2019, doi:10.5194/acp-19-8163-2019.
  • C. Chu, K. Wu, B. Luo, Q. Cao, and H. Zhang, “Hydrogen storage by liquid organic hydrogen carriers: catalyst, renewable carrier, and technology–a review,” Carbon Resources Conversion, vol. 6, no. 4, pp. 334–351, 2023, doi:10.1016/j.crcon.2023.03.007.
  • M. Aziz, A. T. Wijayanta, and A. B. D. Nandiyanto, “Ammonia as effective hydrogen storage: A review on production, storage and utilization,” Energies, vol. 13, no. 12, p. 3062, 2020, doi:10.3390/en13123062.
  • W. Raróg-Pilecka, D. Szmigiel, A. Komornicki, J. Zieliński, and Z. Kowalczyk, “Catalytic properties of small ruthenium particles deposited on carbon. Ammonia decomposition studies,” Carbon, vol. 41, no. 3, pp. 589–591, 2003, doi:10.1016/S0008-6223(02)00393-7.
There are 71 citations in total.

Details

Primary Language English
Subjects Air Pollution and Gas Cleaning , Energy, Renewable Energy Resources , Environmental and Sustainable Processes
Journal Section Review
Authors

Caner İlhan 0009-0008-6515-9465

Submission Date August 12, 2024
Acceptance Date December 22, 2024
Early Pub Date November 18, 2025
Publication Date December 31, 2025
Published in Issue Year 2025 Volume: 8 Issue: 4

Cite

APA İlhan, C. (2025). Sustainable aviation fuels: Evaluating environmental and operational impacts. Environmental Research and Technology, 8(4), 1035-1049. https://doi.org/10.35208/ert.1531974
AMA İlhan C. Sustainable aviation fuels: Evaluating environmental and operational impacts. ERT. December 2025;8(4):1035-1049. doi:10.35208/ert.1531974
Chicago İlhan, Caner. “Sustainable Aviation Fuels: Evaluating Environmental and Operational Impacts”. Environmental Research and Technology 8, no. 4 (December 2025): 1035-49. https://doi.org/10.35208/ert.1531974.
EndNote İlhan C (December 1, 2025) Sustainable aviation fuels: Evaluating environmental and operational impacts. Environmental Research and Technology 8 4 1035–1049.
IEEE C. İlhan, “Sustainable aviation fuels: Evaluating environmental and operational impacts”, ERT, vol. 8, no. 4, pp. 1035–1049, 2025, doi: 10.35208/ert.1531974.
ISNAD İlhan, Caner. “Sustainable Aviation Fuels: Evaluating Environmental and Operational Impacts”. Environmental Research and Technology 8/4 (December2025), 1035-1049. https://doi.org/10.35208/ert.1531974.
JAMA İlhan C. Sustainable aviation fuels: Evaluating environmental and operational impacts. ERT. 2025;8:1035–1049.
MLA İlhan, Caner. “Sustainable Aviation Fuels: Evaluating Environmental and Operational Impacts”. Environmental Research and Technology, vol. 8, no. 4, 2025, pp. 1035-49, doi:10.35208/ert.1531974.
Vancouver İlhan C. Sustainable aviation fuels: Evaluating environmental and operational impacts. ERT. 2025;8(4):1035-49.