Research Article
BibTex RIS Cite

Long term changes of the major coastal wetlands of India using global surface water datasets

Year 2025, Volume: 8 Issue: 4, 843 - 855, 31.12.2025
https://doi.org/10.35208/ert.1557156

Abstract

Wetlands, which are either periodically or permanently inundated by water, play a crucial role in our ecosystems. They aid in flood control, recharge groundwater, preserve biodiversity, improve water quality, and help to manage climate change. Coastal wetlands are particularly important as they support habitats, reduce erosion, and encourage tourism. However, rapid pace of urbanization and industrialization has resulted in significant degradation of these vital areas. Remote sensing and GIS technologies are helpful in identifying, mapping, and assessing wetland changes, essential for sustainable water management. This study aims to assess the long-term changes in India’s major coastal wetlands—Mumbai-Thane Creek (Maharashtra), Mandovi-Zuari Estuary (Goa), Aghanashini Estuary (Karnataka), Vembanadu Lake (Kerala), Vedaranyam Swamp (Tamil Nadu), Pulicat Lake (Andhra Pradesh), and Chilika Lagoon (Odisha)—using the global surface water dataset (1984–2015), Landsat imagery, and GIS tools. The findings suggest varied trends for wetlands: Mumbai-Thane Creek and Mandovi-Zuari Estuary shrank by 8.7% and 0.1%, respectively, while Aghanashini Estuary and Vembanadu Lake increased by 3.8% and 1.8%. Chilika Lagoon noted the highest increase, i.e., 0.9% (1,417 Ha of permanent water). Vedaranyam Swamp and Pulicat Lake presented nominal changes. The changes are influenced by seasonal flooding, beach accretion, and mangrove growth. The study emphasizes the crucial role of geoinformatics in monitoring wetland status and offers valuable insights for sustainable wetland management. The study highlights the importance of targeted environmental policies to protect India's coastal wetland ecosystems and supports decision-making for urban planning, fisheries development, aquaculture, hydrology, and the protection of biodiversity.

Ethical Statement

Not Applicable

Supporting Institution

Not Applicable

Project Number

Not Applicable

Thanks

---

References

  • S. G. T. Vincent and K. A. Owens, “Coastal wetlands of India: threats and solutions,” Wetlands Ecology and Management, vol. 29(5), pp. 633–639, 2021, doi: 10.1007/s11273-021-09824-6.
  • N. Bassi, M.D. Kumar, A. Sharma, and P. Pardha-Saradhi, “Status of wetlands in India: A review of extent, ecosystem benefits, threats and management strategies, Journal of Hydrology: Regional Studies, vol. 2, pp. 1–19, 2014, doi: 10.1016/j.ejrh.2014.07.001.
  • M. Mahapatra, R. Ramakrishnan, and A.S. Rajawat, “Coastal vulnerability assessment using analytical hierarchical process for South Gujarat coast, India,” Natural Hazards, vol. 76 (1), pp. 139–159, Mar. 2015, doi: 10.1007/s11069-014-1491-y.
  • M. Malik, P. Jakhar, and A. Kadian, “Status of Aquatic Biodiversity of Selected Wetlands in District Hisar: A Case Study of Haryana, India,” Current World Environment Journal, vol. 9(1), pp. 168–173, 2014, doi: 10.12944/CWE.9.1.23.
  • Y. Zhang, J. Yan, X. Cheng, and X. He, “Wetland Changes and Their Relation to Climate Change in the Pumqu Basin, Tibetan Plateau,” International Journal of Environmental Research and Public Health, vol. 18(5), 2021, doi: 10.3390/ijerph18052682.
  • L. Bastin, G. Noel, S. Santiago, B. Bastian, D. Grégoire, F. Marie-Josée, and P. Jean-Francois, “Inland surface waters in protected areas globally: Current coverage and 30-year trends,” PLOS ONE, vol. 14(1), 2019, doi: 10.1371/journal.pone.0210496.
  • T. D. Thiyam, O. Bakimchandra, R.S. Ngangbam, and B.S. Maisnam, “Status of wetlands valleyed in a hilly region of North East India - A review,” International Journal of Water Resources and Environmental Engineering, vol. 9(2), pp. 33–42, 2017, doi: 10.5897/IJWREE2016.0692.
  • L. Mentaschi, M.I. Vousdoukas, J.-F. Pekel, E. Voukouvalas, and L. Feyen, “Global long-term observations of coastal erosion and accretion,” Scientific Reports, vol. 8(1), 2018, doi: 10.1038/s41598-018-30904-w.
  • L. Li, Y. Chen, T. Xu, R. Liu, K. Shi, and C. Huang, “Super-resolution mapping of wetland inundation from remote sensing imagery based on integration of back-propagation neural network and genetic algorithm,” Remote Sensing of Environment, vol. 164, pp. 142–154, 2015, doi: 10.1016/j.rse.2015.04.009.
  • B. Chen, L. Chen, B. Huang, R. Michishita, and B. Xu, “Dynamic monitoring of the Poyang Lake wetland by integrating Landsat and MODIS observations,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 139, pp. 75–87, 2018, doi: 10.1016/j.isprsjprs.2018.02.021.
  • J. Hou, A. I. J. M. Van Dijk, L. J. Renzullo, and P. R. Larraondo, “GloLakes: a database of global lake water storage dynamics from 1984 to present derived using laser and radar altimetry and optical remote sensing,” Earth System Science Data, vol. 9, pp. 1–20, 2022, doi: doi.org/10.5194/essd-2022-266.
  • J. Campbell, Introduction to Remote Sensing. The Guilford Press, New York, 1987.
  • M. Guo, J. Li, C. Sheng, J. Xu, and L. Wu, “A Review of Wetland Remote Sensing,” Sensors, vol. 17(4), 2017, doi: 10.3390/s17040777.
  • B. Lehner, M. Anand, E. Fluet-Chouinard, F. Tan, F. Aires, G.H. Allen, P. Bousquet, J.G. Canadell, N. Davidson, C.M. Finlayson, T. Gumbricht, L. Hilarides, G. Hugelius, R.B. Jackson, M.C. Korver, P.B. McIntyre, S. Nagy, D. Olefeldt, T.M. Pavelsky, J. Pekel, B. Poulter, C. Prigent, J. Wang, T.A. Worthington, D. Yamazaki, and M. Thieme, “Mapping the world’s inland waters: an update to the Global Lakes and Wetlands Database (GLWD v2),” Earth System Science Date (preprint), vol. 7, pp. 1–49, 2024, doi: 10.5194/essd-2024-204.
  • S.Z. Qasim and R. Sen Gupta, “Environmental characteristics of the Mandovi-Zuari estuarine system in Goa,” Estuarine, Coastal and Shelf Science, vol. 13, 1981.
  • S.Z. Qasim and R. Sen Gupta, “Environmental characteristics of the Mandovi-Zuari estuarine system in Goa,” Estuarine, Coastal and Shelf Science, vol. 13(5), pp. 557–578, 1981, doi: 10.1016/S0302-3524(81)80058-8.
  • R. Visweshwaran, R. Ramsankaran, T.I. Eldho, and M.K. Jha, “Hydrological Impact Assessment of Future Climate Change on a Complex River Basin of Western Ghats, India,” Water, vol. 14(21), 2022, doi: 10.3390/w14213571.
  • M. Mishra, T. Acharyya, P. Chand, C.A.G. Santos, R.M. da Silva, C.A.C. dos Santos, S. Pradhan, and D. Kar, “Response of long- to short-term tidal inlet morphodynamics on the ecological ramification of Chilika lake, the tropical Ramsar wetland in India,” Science of the Total Environment, vol. 807, 2022, doi: 10.1016/j.scitotenv.2021.150769.
  • T. Acharyya, M. Mishra, and D. Kar, “Rapid impact assessment of extremely severe cyclonic storm Fani on morpho-dynamics & ecology of Chilika Lake, Odisha, India,” Journal of Coastal Conservation, vol. 24(3), 2020, doi: 10.1007/s11852-020-00754-8.
  • S. Paul, M. Mishra, R. Guria, S. Pati, B. Baraj, R.M. da Silva, and C.A.G Santos, “A multi-temporal analysis of shoreline dynamics influenced by natural and anthropogenic factors: Erosion and accretion along the Digha Coast, West Bengal, India,” Marine Pollution Bulletin, vol. 200(1), 2024, doi: 10.1016/j.marpolbul.2024.116089.
  • M. Mishra, R. Guria, S. Paul, B. Baraj, C.A.G. Santos, C.A. dos Santos, and R.M. Silva, “Geo-ecological, shoreline dynamic, and flooding impacts of Cyclonic Storm Mocha: A geospatial analysis,” Science of the Total Environment, vol. 917, 2024, doi: 10.1016/j.scitotenv.2024.170230.
  • S. Paul, M. Mishra, S. Pati, T. Acharyya, C.A.G. Santos, R.M. da Silva, R. Guria, and FX A.T. Laksono, “Evaluation of overwash vulnerability and shoreline dynamics in cyclone-prone Sagar Island, Sundarbans (India),” Science of the Total Environment, vol. 907, 2024, doi: 10.1016/j.scitotenv.2023.167933.
  • H. A. de A. Queiroz, R. M. Gonçalves, and M. Mishra, “Characterizing global satellite-based indicators for coastal vulnerability to erosion management as exemplified by a regional level analysis from Northeast Brazil,” Science of the Total Environment, vol. 817. 2022, doi: 10.1016/j.scitotenv.2021.152849.
  • M. Mishra, C. A. G. Santos, R. M. da Silva, N. K. Rana, D. Kar, and N. R. Parida, “Monitoring vegetation loss and shoreline change due to tropical cyclone Fani using Landsat imageries in Balukhand-Konark Wildlife Sanctuary, India,” Journal of Coastal Conservation, vol. 25(6), 2021, doi: 10.1007/s11852-021-00840-5.
  • M. F. Hossen and N. Sultana, “Shoreline change detection using DSAS technique: Case of Saint Martin Island, Bangladesh,” Remote Sensing Applications: Society and Environment, vol. 30, 2023, doi: 10.1016/j.rsase.2023.100943.
  • S.O. Mabwoga and A.K. Thukral, “Characterization of change in the Harike wetland, a Ramsar site in India, using landsat satellite data,” Springerplus, vol. 3(1), 2014, doi: 10.1186/2193-1801-3-576.
  • T. German Amali Jacintha, S.R. Radhika Rajasree, J. Dilip Kumar, and J. Sriganesh, “Assessment of wetland change dynamics of Chennai coast, Tamil Nadu, India, using satellite remote sensing,” Indian Journal of Geo-Marine Sciences, vol. 48 (8), pp. 1258–1266, 2019.
  • D. Dutta, T. Kumar, C. Jayaram, and W. Akram, “Shoreline Change Analysis of Hooghly Estuary Using Multi-Temporal Landsat Data and Digital Shoreline Analysis System,” in Geographic Information Systems and Applications in Coastal Studies, IntechOpen, 2022.
  • S. Nandi, M. Ghosh, A. Kundu, D. Dutta, and M. Baksi, “Shoreline shifting and its prediction using remote sensing and GIS techniques: a case study of Sagar Island, West Bengal (India),” Journal of Coastal Conservation, vol. 20(1), pp. 61–80, 2016, doi: 10.1007/s11852-015-0418-4.
  • M. Mahapatra, R. Ratheesh, and A.S. Rajawat, “Shoreline Change Analysis along the Coast of South Gujarat, India, Using Digital Shoreline Analysis System,” Journal of the Indian Society of Remote Sensing, vol. 42(4), pp. 869–876, 2014, doi: 10.1007/s12524-013-0334-8.
  • P.V. Dehadrai, “Changes in the Environmental Features of the Zauri and Mandovi Esturies in relation to Tides,” National Institute of Oceanography, Goa, pp. 68–80, 1969.
  • J.-F. Pekel, A. Cottam, N. Gorelick, and A.S. Belward, “High-resolution mapping of global surface water and its long-term changes,” Nature, vol. 540(7633), pp. 418–422, 2016, doi: 10.1038/nature20584.
  • R. Saraswathy and P.K. Pandian, “Pulicat Lake: A Fragile Ecosystem Under Threat,” Slovak Journal of Civil Engineering, vol. 24(3), pp. 8–18, 2016, doi: 10.1515/sjce-2016-0012.
  • M. Mishra, T. Acharyya, C.A.G. Santos, R.M. da Silva, D. Kar, A.H.M. Kamal, and S. Raulo, “Geo-ecological impact assessment of severe cyclonic storm Amphan on Sundarban mangrove forest using geospatial technology,” Estuarine, Coastal and Shelf Science, vol. 260(3), 2021, doi: 10.1016/j.ecss.2021.107486.
  • M. Mishra, C.A.G. Santos, R.M. da Silva, N.K. Rana, D. Kar, and N.R. Parida, “Monitoring vegetation loss and shoreline change due to tropical cyclone Fani using Landsat imageries in Balukhand-Konark Wildlife Sanctuary, India,” Journal of Coastal Conservation, vol. 25(6), 2021, doi: 10.1007/s11852-021-00840-5.
  • A.K. Pratihary, S.W.A. Naqvi, H. Naik, B.R. Thorat, G. Narvenkar, B.R. Manjunatha, and V.P. Rao, “Benthic fluxes in a tropical Estuary and their role in the ecosystem,” Estuarine, Coastal and Shelf Science, vol. 85(3), pp. 387–398, 2009, doi: 10.1016/j.ecss.2009.08.012.
  • V. P. Sathiya Bama, S. Rajakumari, and R. Ramesh, “Coastal vulnerability assessment of Vedaranyam swamp coast based on land use and shoreline dynamics,” Natural Hazards, vol. 100(2), pp. 829–842, 2020, doi: 10.1007/s11069-019-03844-5.
  • C.A.G. Santos, G.R. do Nascimento, L.M.T. Freitas, L.V. Batista, B. Zerouali, M. Mishra, and R.M. da Silva., “Coastal evolution and future projections in Conde County, Brazil: A multi-decadal assessment via remote sensing and sea-level rise scenarios,” Science of the Total Environment, vol. 915(12), 2024, doi: 10.1016/j.scitotenv.2023.169829.
  • C.A.G. Santos, T.V.M. do Nascimento, M. Mishra, and R.M. da Silva, “Analysis of long- and short-term shoreline change dynamics: A study case of João Pessoa city in Brazil,” Science of the Total Environment, vol. 769, 2021, doi: 10.1016/j.scitotenv.2020.144889.
  • M. Mishra, P. Chand, S.K. Beja, C.A.G. Santos, R.M. da Silva, I. Ahmed, and A.H.M. Kamal, “Quantitative assessment of present and the future potential threat of coastal erosion along the Odisha coast using geospatial tools and statistical techniques,” Science of the Total Environment, vol. 875(2), 2023, doi: 10.1016/j.scitotenv.2023.162488.
  • M. Mishra, T. Acharyya, P. Chand, C.A.G. Santos, D. Kar, P.P. Das, N. Pattnaik, R.M. da Silva, and T.V.M. do Nascimento, “Analyzing shoreline dynamicity and the associated socioecological risk along the Southern Odisha Coast of India using remote sensing-based and statistical approaches,” Geocarto International, vol. 37(14), 2022, doi: 10.1080/10106049.2021.1882005.
  • M. Mishra, P. Chand, N. Pattnaik, D.B. Kattel, G.K. Panda, M. Mohanti, U.K. Baruah, S.K. Chandniha, S. Achary, and Tapan Mohanty, “Response of long- to short-term changes of the Puri coastline of Odisha (India) to natural and anthropogenic factors: a remote sensing and statistical assessment,” Environmental Earth Sciences, vol. 78(11), pp. 1–23, 2019, doi: 10.1007/s12665-019-8336-7.
  • M. Mishra, T. Acharyya, B. Halder, C.A.G. Santos, R.M. da Silva, N.R. Rout, and D. Bhattacharyya, “Impact assessment of Cyclone Yaas on the mangrove forest area in the Bhitarkanika National Park (India),” Journal of Marine Systems, vol. 242, 2024, doi: 10.1016/j.jmarsys.2023.103947.
  • N. Mangoro, N. S. Kubanza, and M. D. Simatele, “Exploring wetland change in the Gauteng Province, South Africa,” Environmental Research, vol. 259, 2024, doi: 10.1016/j.envres.2024.119520.
There are 44 citations in total.

Details

Primary Language English
Subjects Surface Water Hydrology
Journal Section Research Article
Authors

Ridham Maheriya1 0009-0009-1606-394X

Bina Patel 0000-0002-3787-8496

Project Number Not Applicable
Submission Date September 27, 2024
Acceptance Date January 6, 2025
Early Pub Date November 18, 2025
Publication Date December 31, 2025
Published in Issue Year 2025 Volume: 8 Issue: 4

Cite

APA Maheriya1, R., & Patel, B. (2025). Long term changes of the major coastal wetlands of India using global surface water datasets. Environmental Research and Technology, 8(4), 843-855. https://doi.org/10.35208/ert.1557156
AMA Maheriya1 R, Patel B. Long term changes of the major coastal wetlands of India using global surface water datasets. ERT. December 2025;8(4):843-855. doi:10.35208/ert.1557156
Chicago Maheriya1, Ridham, and Bina Patel. “Long Term Changes of the Major Coastal Wetlands of India Using Global Surface Water Datasets”. Environmental Research and Technology 8, no. 4 (December 2025): 843-55. https://doi.org/10.35208/ert.1557156.
EndNote Maheriya1 R, Patel B (December 1, 2025) Long term changes of the major coastal wetlands of India using global surface water datasets. Environmental Research and Technology 8 4 843–855.
IEEE R. Maheriya1 and B. Patel, “Long term changes of the major coastal wetlands of India using global surface water datasets”, ERT, vol. 8, no. 4, pp. 843–855, 2025, doi: 10.35208/ert.1557156.
ISNAD Maheriya1, Ridham - Patel, Bina. “Long Term Changes of the Major Coastal Wetlands of India Using Global Surface Water Datasets”. Environmental Research and Technology 8/4 (December2025), 843-855. https://doi.org/10.35208/ert.1557156.
JAMA Maheriya1 R, Patel B. Long term changes of the major coastal wetlands of India using global surface water datasets. ERT. 2025;8:843–855.
MLA Maheriya1, Ridham and Bina Patel. “Long Term Changes of the Major Coastal Wetlands of India Using Global Surface Water Datasets”. Environmental Research and Technology, vol. 8, no. 4, 2025, pp. 843-55, doi:10.35208/ert.1557156.
Vancouver Maheriya1 R, Patel B. Long term changes of the major coastal wetlands of India using global surface water datasets. ERT. 2025;8(4):843-55.