Research Article
BibTex RIS Cite
Year 2019, , 233 - 242, 31.12.2019
https://doi.org/10.35208/ert.650398

Abstract

References

  • [1] K. C. Pavithra, P. S. Kumar, V. Jaikumar and P. S. Rajan, ‘‘Removal of colorants from wastewater: a review on sources and treatment strategies’’, Journal of Industrial and Engineering Chemistry, Vol. 75, pp. 1-19, 2019.
  • [2] K. Khalid, W. S. W. Ngah, M. A. K. M. Hanafiah, N. S. A. Malek and S. N. M. Khazaai, ‘‘Acid Blue 25 adsorption onto phosphoric acid treated rubber leaf powder’’, American Journal of Environmental Engineering, Vol. 5(3A), pp. 19-25, 2015.
  • [3] Z.-X. Han, Z. Zhu, D.-D. Wu, J. Wu and Y.-R. Liu, ‘‘Adsorption kinetics and thermodynamics of acid blue 25 and methylene blue dye solutions on natural sepiolite’’, Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, Vol. 44(1), pp. 140-147, 2014.
  • [4] M. A. K. M. Hanafiah, W. S. W. Ngah, S. H. Zolkafly, L. C. Teong and Z. A. A. Majid, ‘‘Acid Blue 25 adsorption on base treated Shorea dasyphylla sawdust: Kinetic, isotherm, thermodynamic and spectroscopic analysis’’, Journal of Environmental Sciences, Vol. 24(2), pp. 261-268, 2012.
  • [5] A. Bhatnagar and A. K. Minocha, ‘‘Assessment of the biosorption characteristics of lychee (Litchi chinensis) peel waste for the removal of acid blue 25 dye from water’’, Environmental Technology, Vol. 31(1), pp. 97-105, 2010.
  • [6] S. N. Jain and P. R. Gogate, ‘‘NaOH-treated dead leaves of Ficus racemosa as an efficient biosorbent for acid blue 25 removal’’, International Journal of Environmental Science and Technology. Vol. 14, pp. 531–542, 2017.
  • [7] N. B. Singh, G. Nagpal, S. Agrawal and Rachna, ‘‘Water purification by using adsorbents: a review’’, Environmental Technology & Innovation, Vol. 11, pp. 187-240, 2018.
  • [8] S. De Gisi, G. Lofrano, M. Grassi and M. Notarnicola, ‘‘Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: a review’’, Sustainable Materials and Technologies, Vol. 9, pp. 10-40, 2016.
  • [9] D. A. Yaseen and M. Scholz, ‘‘Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review’’, International Journal of Environmental Science and Technology, Vol. 16(2), pp. 1193–1226, 2019.
  • [10] G. Crini, E. Lichtfouse, L. D. Wilson and N. Morin-Crini, ‘‘Conventional and non-conventional adsorbents for wastewater treatment’’, Environmental Chemistry Letters, Vol. 17(1), pp. 195-213, 2019.
  • [11] W. Li, B. Mu and Y. Yang, ‘‘Feasibility of industrial-scale treatment of dye wastewater via bio-adsorption technology’’, Bioresource Technology, Vol. 277, pp. 157–170, 2019.
  • [12] V. Katheresan, J. Kansedo and S. Y. Lau, ‘‘Efficiency of various recent wastewater dye removal methods:a review’’, Journal of Environmental Chemical Engineering Vol. 6, pp. 4676–4697, 2018.
  • [13] S. Mani, P. Chowdhary and R. N. Bharagava, ‘‘Textile wastewater dyes: toxicity profile and treatment approaches’’, Emerging and Eco-Friendly Approaches for Waste Management, pp. 219-244, 2019.
  • [14] R. T.-Gómez, D. A. R.-Ramírez, V. H.-Montoya, A. B.-Petriciolet, A., C. J. D.-Valle, and M. A. M.-Morán, ‘‘Synergic adsorption in the simultaneous removal of acid blue 25 and heavy metals from water using a Ca(PO3)2- modified carbon’’, Journal of Hazardous Materials, Vol. 199-200, pp. 290-300, 2012.
  • [15] V. Gupta and Suhas, ‘‘Application of low-cost adsorbents for dye removal - a review’’, Journal of Environmental Management, Vol. 90(8), pp. 2313–2342, 2009.
  • [16] K, Badii, F. D. Ardejani, M. A. Saberi, N. Y. Limaee and S. Z. Shafaei, ‘‘Adsorption of acid blue 25 dye on diatomite in aqueous solutions’’, Indian Journal of Chemical Technology, Vol. 17, pp. 7-16, 2010.
  • [17] I. Ali, A. Mohd and T. A. Khan, ‘‘Low cost adsorbents for the removal of organic pollutants from wastewater’’, Journal of Environmental Management, Vol. 113, pp. 170-183, 2012.
  • [18] M. S. U. Rehman, I. Kim and J. I. Han, ‘‘Adsorption of methylene blue dye from aqueous solution by sugar extracted spent rice biomass’’, Carbohydrate Polymers, Vol. 90, pp. 1314–1322, 2012.
  • [19] K. S. Bharathi and S. T. Ramesh, ‘‘Removal of dyes using agricultural waste as low-cost adsorbents: a review’’, Applied Water Science, Vol. 3(4), pp. 773-790, 2013.
  • [20] Y. Zhou, J. Lu, Y. Zhou and Y. Liu, ‘‘Recent advances for dyes removal using novel adsorbents: a review’’, Environmental Pollution, Vol. 252, pp. 352-365, 2019.
  • [21] E. Forgacs, T. Cserhati and G. Oros, ‘‘Removal of synthetic dyes from wastewaters: a review’’, Environment International, Vol. 30, pp. 953-971, 2004.
  • [22] M. Kousha, S. Tavakoli, E. Daneshvar, A. Vazirzadeh and A. Bhatnagar, ‘‘Central composite design optimization of acid blue 25 dye biosorption using shrimp shell biomass’’, Journal of Molecular Liquids, Vol. 207, pp. 266-273, 2015.
  • [23] T. Robinson, G. McMullan, R. Marchant and P. Nigam, ‘‘Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative’’, Bioresource Technology, Vol. 77, pp. 247-255, 2001.
  • [24] H. Luo, X. Huang, Y. Luo, Z. Li, L. Li, C. Gao, J. Xiong and W. Li, ‘‘Adsorption behavior and mechanism of acidic blue 25 dye onto cucurbit[8]uril: A spectral and DFT study’’, Spectrochimica Acta Part A: Molecular And Biomolecular Spectroscopy, Vol. 193, pp. 125-132, 2018.
  • [25] M. Auta and B. H. Hameed, ‘‘Preparation of waste tea activated carbon using potassium acetate as an activating agent for adsorption of acid blue 25 dye’’, Chemical Engineering Journal, Vol. 171, pp. 502-509, 2011.
  • [26] M. Ghanei, A. Rashidi, H.-A. Tayebi and M. E. Yazdanshenas, ‘‘Removal of acid blue 25 from aqueous media by Magnetic-SBA-15/CPAA super adsorbent: adsorption isotherm, kinetic, and thermodynamic studies’’, Journal of Chemical & Engineering Data, Vol. 63, pp. 3592-3605, 2018.
  • [27] E. Daneshvar, M. S. Sohrabi, M. Kousha, A. Bhatnagar, B. Aliakbarian, A. Converti and A. C. Norrstro¨me, ‘‘Shrimp shell as an efficient bioadsorbent for acid blue 25 dye removal from aqueous solution’’, Journal of the Taiwan Institute of Chemical Engineers, Vol. 45, pp. 2926-2934, 2014.
  • [28] M. K. Dahri, L. B. L. Lim, N. Priyantha and C. M. Chan, ‘‘Removal of acid blue 25 using Cempedak Durian peel from aqueous medium: Isotherm, kinetics and thermodynamics studies’’, International Food Research Journal, Vol. 23(3), pp. 1154-1163, 2016.
  • [29] M. R. R. Kooh, M. K. Dahri, L. B. L. Lim and L. H. Lim, ‘‘Batch adsorption studies on the removal of acid blue 25 from aqueous solution using Azolla pinnata and soya bean waste’’, Arabian Journal of Science and Engineering, Vol. 41(7), pp. 2453–2464, 2016.
  • [30] M. R. R. Kooh, M. K. Dahri, L. B. L. Lim, L. H. Lim and C. M. Chan, ‘‘Separation of acid blue 25 from aqueous solution using water lettuce and agro-wastes by batch adsorption studies’’, Applied Water Science, Vol. 8(61), pp. 1-10, 2018.
  • [31] F. Ferrero, ‘‘Dye removal by low cost adsorbents: Hazelnut shells in comparison with wood sawdust’’, Journal of Hazardous Materials, Vol. 142, pp. 144–152, 2007.

Adsorption of Acid Blue 25 on peach seed powder: Isotherm, kinetic and thermodynamic studies

Year 2019, , 233 - 242, 31.12.2019
https://doi.org/10.35208/ert.650398

Abstract

In the present study peach seed
powder (PSP) was used as an adsorbent to remove Acid Blue 25 (AB25) a common
basic dye, from aqueous solution. The adsorption experiments were carried out
in a batch system and the effects of initial concentration, interaction time
and temperature were investigated. The Langmuir, Freundlich and Temkin
adsorption isotherms were used to model the equilibrium data. The kinetic
parameters were determined by the pseudo first order (PFO), pseudo second order
(PSO) and intra-particle diffusion (IPD) models. According to the results, the
Freundlich isotherm model is a more convenient option compared with the
Langmuir and Temkin models. The Freundlich model coefficients increased as the
temperature increased, which shows that the adsorption process becomes more
favorable with higher temperature. The experimental and calculated
qe values close to one
another indicated that this process fits the PSO kinetic model with higher R
2
values than the other two models. Kinetic constants become closer to both the
temperatures and initial concentrations and
qe
values increases with the increasing concentration of AB25. The initial dye
concentration increased from 25 to 150 mg L
-1, while the dye
adsorption capacity onto PSP increased from 4.80 to 39.01 mg g
-1,
from 5.57 to 44.27 mg g
-1 and from 6.80 to 49.22 mg g-1
for 298, 308 and 323 K, respectively. The monolayer adsorption capacity (
qm) of PSP was determined to
be 56.18, 64.94, 95.24 mg g
-1 for 298, 308 and 323 K, respectively.
Thermodynamic parameters for free energy (
ΔG),
enthalpy (
ΔH) and entropy (ΔS) of the separation process were
determined as -1737,1 J mol
-1, 14.776 kJ mol-1 and 55,413
J
mol-1, respectively. The negative values of ΔGo showed that this separation process was endothermic and natural. The
results of the present study demonstrated that PSP can be used as an
alternative material in dye removal.



 




References

  • [1] K. C. Pavithra, P. S. Kumar, V. Jaikumar and P. S. Rajan, ‘‘Removal of colorants from wastewater: a review on sources and treatment strategies’’, Journal of Industrial and Engineering Chemistry, Vol. 75, pp. 1-19, 2019.
  • [2] K. Khalid, W. S. W. Ngah, M. A. K. M. Hanafiah, N. S. A. Malek and S. N. M. Khazaai, ‘‘Acid Blue 25 adsorption onto phosphoric acid treated rubber leaf powder’’, American Journal of Environmental Engineering, Vol. 5(3A), pp. 19-25, 2015.
  • [3] Z.-X. Han, Z. Zhu, D.-D. Wu, J. Wu and Y.-R. Liu, ‘‘Adsorption kinetics and thermodynamics of acid blue 25 and methylene blue dye solutions on natural sepiolite’’, Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, Vol. 44(1), pp. 140-147, 2014.
  • [4] M. A. K. M. Hanafiah, W. S. W. Ngah, S. H. Zolkafly, L. C. Teong and Z. A. A. Majid, ‘‘Acid Blue 25 adsorption on base treated Shorea dasyphylla sawdust: Kinetic, isotherm, thermodynamic and spectroscopic analysis’’, Journal of Environmental Sciences, Vol. 24(2), pp. 261-268, 2012.
  • [5] A. Bhatnagar and A. K. Minocha, ‘‘Assessment of the biosorption characteristics of lychee (Litchi chinensis) peel waste for the removal of acid blue 25 dye from water’’, Environmental Technology, Vol. 31(1), pp. 97-105, 2010.
  • [6] S. N. Jain and P. R. Gogate, ‘‘NaOH-treated dead leaves of Ficus racemosa as an efficient biosorbent for acid blue 25 removal’’, International Journal of Environmental Science and Technology. Vol. 14, pp. 531–542, 2017.
  • [7] N. B. Singh, G. Nagpal, S. Agrawal and Rachna, ‘‘Water purification by using adsorbents: a review’’, Environmental Technology & Innovation, Vol. 11, pp. 187-240, 2018.
  • [8] S. De Gisi, G. Lofrano, M. Grassi and M. Notarnicola, ‘‘Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: a review’’, Sustainable Materials and Technologies, Vol. 9, pp. 10-40, 2016.
  • [9] D. A. Yaseen and M. Scholz, ‘‘Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review’’, International Journal of Environmental Science and Technology, Vol. 16(2), pp. 1193–1226, 2019.
  • [10] G. Crini, E. Lichtfouse, L. D. Wilson and N. Morin-Crini, ‘‘Conventional and non-conventional adsorbents for wastewater treatment’’, Environmental Chemistry Letters, Vol. 17(1), pp. 195-213, 2019.
  • [11] W. Li, B. Mu and Y. Yang, ‘‘Feasibility of industrial-scale treatment of dye wastewater via bio-adsorption technology’’, Bioresource Technology, Vol. 277, pp. 157–170, 2019.
  • [12] V. Katheresan, J. Kansedo and S. Y. Lau, ‘‘Efficiency of various recent wastewater dye removal methods:a review’’, Journal of Environmental Chemical Engineering Vol. 6, pp. 4676–4697, 2018.
  • [13] S. Mani, P. Chowdhary and R. N. Bharagava, ‘‘Textile wastewater dyes: toxicity profile and treatment approaches’’, Emerging and Eco-Friendly Approaches for Waste Management, pp. 219-244, 2019.
  • [14] R. T.-Gómez, D. A. R.-Ramírez, V. H.-Montoya, A. B.-Petriciolet, A., C. J. D.-Valle, and M. A. M.-Morán, ‘‘Synergic adsorption in the simultaneous removal of acid blue 25 and heavy metals from water using a Ca(PO3)2- modified carbon’’, Journal of Hazardous Materials, Vol. 199-200, pp. 290-300, 2012.
  • [15] V. Gupta and Suhas, ‘‘Application of low-cost adsorbents for dye removal - a review’’, Journal of Environmental Management, Vol. 90(8), pp. 2313–2342, 2009.
  • [16] K, Badii, F. D. Ardejani, M. A. Saberi, N. Y. Limaee and S. Z. Shafaei, ‘‘Adsorption of acid blue 25 dye on diatomite in aqueous solutions’’, Indian Journal of Chemical Technology, Vol. 17, pp. 7-16, 2010.
  • [17] I. Ali, A. Mohd and T. A. Khan, ‘‘Low cost adsorbents for the removal of organic pollutants from wastewater’’, Journal of Environmental Management, Vol. 113, pp. 170-183, 2012.
  • [18] M. S. U. Rehman, I. Kim and J. I. Han, ‘‘Adsorption of methylene blue dye from aqueous solution by sugar extracted spent rice biomass’’, Carbohydrate Polymers, Vol. 90, pp. 1314–1322, 2012.
  • [19] K. S. Bharathi and S. T. Ramesh, ‘‘Removal of dyes using agricultural waste as low-cost adsorbents: a review’’, Applied Water Science, Vol. 3(4), pp. 773-790, 2013.
  • [20] Y. Zhou, J. Lu, Y. Zhou and Y. Liu, ‘‘Recent advances for dyes removal using novel adsorbents: a review’’, Environmental Pollution, Vol. 252, pp. 352-365, 2019.
  • [21] E. Forgacs, T. Cserhati and G. Oros, ‘‘Removal of synthetic dyes from wastewaters: a review’’, Environment International, Vol. 30, pp. 953-971, 2004.
  • [22] M. Kousha, S. Tavakoli, E. Daneshvar, A. Vazirzadeh and A. Bhatnagar, ‘‘Central composite design optimization of acid blue 25 dye biosorption using shrimp shell biomass’’, Journal of Molecular Liquids, Vol. 207, pp. 266-273, 2015.
  • [23] T. Robinson, G. McMullan, R. Marchant and P. Nigam, ‘‘Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative’’, Bioresource Technology, Vol. 77, pp. 247-255, 2001.
  • [24] H. Luo, X. Huang, Y. Luo, Z. Li, L. Li, C. Gao, J. Xiong and W. Li, ‘‘Adsorption behavior and mechanism of acidic blue 25 dye onto cucurbit[8]uril: A spectral and DFT study’’, Spectrochimica Acta Part A: Molecular And Biomolecular Spectroscopy, Vol. 193, pp. 125-132, 2018.
  • [25] M. Auta and B. H. Hameed, ‘‘Preparation of waste tea activated carbon using potassium acetate as an activating agent for adsorption of acid blue 25 dye’’, Chemical Engineering Journal, Vol. 171, pp. 502-509, 2011.
  • [26] M. Ghanei, A. Rashidi, H.-A. Tayebi and M. E. Yazdanshenas, ‘‘Removal of acid blue 25 from aqueous media by Magnetic-SBA-15/CPAA super adsorbent: adsorption isotherm, kinetic, and thermodynamic studies’’, Journal of Chemical & Engineering Data, Vol. 63, pp. 3592-3605, 2018.
  • [27] E. Daneshvar, M. S. Sohrabi, M. Kousha, A. Bhatnagar, B. Aliakbarian, A. Converti and A. C. Norrstro¨me, ‘‘Shrimp shell as an efficient bioadsorbent for acid blue 25 dye removal from aqueous solution’’, Journal of the Taiwan Institute of Chemical Engineers, Vol. 45, pp. 2926-2934, 2014.
  • [28] M. K. Dahri, L. B. L. Lim, N. Priyantha and C. M. Chan, ‘‘Removal of acid blue 25 using Cempedak Durian peel from aqueous medium: Isotherm, kinetics and thermodynamics studies’’, International Food Research Journal, Vol. 23(3), pp. 1154-1163, 2016.
  • [29] M. R. R. Kooh, M. K. Dahri, L. B. L. Lim and L. H. Lim, ‘‘Batch adsorption studies on the removal of acid blue 25 from aqueous solution using Azolla pinnata and soya bean waste’’, Arabian Journal of Science and Engineering, Vol. 41(7), pp. 2453–2464, 2016.
  • [30] M. R. R. Kooh, M. K. Dahri, L. B. L. Lim, L. H. Lim and C. M. Chan, ‘‘Separation of acid blue 25 from aqueous solution using water lettuce and agro-wastes by batch adsorption studies’’, Applied Water Science, Vol. 8(61), pp. 1-10, 2018.
  • [31] F. Ferrero, ‘‘Dye removal by low cost adsorbents: Hazelnut shells in comparison with wood sawdust’’, Journal of Hazardous Materials, Vol. 142, pp. 144–152, 2007.
There are 31 citations in total.

Details

Primary Language English
Subjects Environmental Engineering
Journal Section Research Articles
Authors

Ali Rıza Kul 0000-0001-9331-775X

Adnan Aldemir 0000-0001-9884-0961

Hasan Elik 0000-0003-2243-112X

Publication Date December 31, 2019
Submission Date November 24, 2019
Acceptance Date December 13, 2019
Published in Issue Year 2019

Cite

APA Kul, A. R., Aldemir, A., & Elik, H. (2019). Adsorption of Acid Blue 25 on peach seed powder: Isotherm, kinetic and thermodynamic studies. Environmental Research and Technology, 2(4), 233-242. https://doi.org/10.35208/ert.650398
AMA Kul AR, Aldemir A, Elik H. Adsorption of Acid Blue 25 on peach seed powder: Isotherm, kinetic and thermodynamic studies. ERT. December 2019;2(4):233-242. doi:10.35208/ert.650398
Chicago Kul, Ali Rıza, Adnan Aldemir, and Hasan Elik. “Adsorption of Acid Blue 25 on Peach Seed Powder: Isotherm, Kinetic and Thermodynamic Studies”. Environmental Research and Technology 2, no. 4 (December 2019): 233-42. https://doi.org/10.35208/ert.650398.
EndNote Kul AR, Aldemir A, Elik H (December 1, 2019) Adsorption of Acid Blue 25 on peach seed powder: Isotherm, kinetic and thermodynamic studies. Environmental Research and Technology 2 4 233–242.
IEEE A. R. Kul, A. Aldemir, and H. Elik, “Adsorption of Acid Blue 25 on peach seed powder: Isotherm, kinetic and thermodynamic studies”, ERT, vol. 2, no. 4, pp. 233–242, 2019, doi: 10.35208/ert.650398.
ISNAD Kul, Ali Rıza et al. “Adsorption of Acid Blue 25 on Peach Seed Powder: Isotherm, Kinetic and Thermodynamic Studies”. Environmental Research and Technology 2/4 (December 2019), 233-242. https://doi.org/10.35208/ert.650398.
JAMA Kul AR, Aldemir A, Elik H. Adsorption of Acid Blue 25 on peach seed powder: Isotherm, kinetic and thermodynamic studies. ERT. 2019;2:233–242.
MLA Kul, Ali Rıza et al. “Adsorption of Acid Blue 25 on Peach Seed Powder: Isotherm, Kinetic and Thermodynamic Studies”. Environmental Research and Technology, vol. 2, no. 4, 2019, pp. 233-42, doi:10.35208/ert.650398.
Vancouver Kul AR, Aldemir A, Elik H. Adsorption of Acid Blue 25 on peach seed powder: Isotherm, kinetic and thermodynamic studies. ERT. 2019;2(4):233-42.