Research Article
BibTex RIS Cite

Degree of Pb stabilization in MSWI fly ash using size-fractionated natural fishbone hydroxyapatite

Year 2022, Volume: 5 Issue: 2, 137 - 147, 30.06.2022
https://doi.org/10.35208/ert.998326

Abstract

Incineration is a common technique worldwide for treating Municipal Solid Waste (MSW). However, incineration residues (e.g., bottom and fly ash) require special treatment to prevent environmental risks due to the high content of heavy metals. The present study evaluated the stabilization degree of Pb, a toxic heavy metal in MSW incineration fly ash (IFA) treating by size-fractionated natural fishbone (FB) hydroxyapatite (HA). Bones from various fish species were used at different size fractions (<600 µm, 600 µm–2 mm, and 0–2 mm). The effect of different fishbone hydroxyapatite (FB-HA) sizes was studied by batch tests under the FB/IFA ratios of 0.0 and 1:10 (wt.), the contact or settling time of 6, 12, 24, and 672 hours, and the fixed W/S ratio of 1.5 mL/g. Using only 10% FB, Pb stabilization efficiency after 672 hours obtained 95.55% and 94.24% for FB sizes <600 µm and 600 µm–2 mm, respectively, and about 86.1% for non-fractionated FB (0–2 mm). The results indicated that contact time was the most critical factor for enhanced Pb stabilization. The FB particle size of 0–2 mm was deemed appropriate for Pb immobilization in short and long time settling periods. The adsorption isotherms were fitted well with the Langmuir and Freundlich models. The RL values of the Langmuir model were less than one and the n values of the Freundlich isotherm lie between 3 and 5, conferring the favorable adsorption of Pb to FB-HA for all size fractions.

Supporting Institution

Japan Society for the Promotion of Science (JSPS)

Project Number

Grant-in-Aid for Scientific Research (C) no. 18K11697

References

  • Reference1 Ferreira C, Ribeiro A, Ottosen L. 2003. Possible applications for municipal solid waste fly ash. Journal of Hazardous Materials 96(2–3): 201-216.
  • Reference2 Ministry of the Environment of Japan. 2013. The outline of waste treatment in Japan: results of fiscal year. Ministry of the Environment of Japan.
  • Reference3. Zhang, Z., Li, A., Wang, X., & Zhang, L. (2016). Stabilization/solidification of municipal solid waste incineration fly ash via co-sintering with waste-derived vitrified amorphous slag. Waste Manage., 56, 238–245. https://doi.org/10.1016/j.wasman.2016.07.002
  • Reference4 Garcia-Lodeiro, I., Carcelen-Taboada, V., Fernández-Jiménez, A., & Palomo, A. (2016). Manufacture of hybrid cements with fly ash and bottom ash from a municipal solid waste incinerator. Constr. Build. Mater, 105, 218–226. https://doi.org/10.1016/j.conbuildmat.2015.12.079
  • Reference5 Wang F, Zhang F, Chen Y, Gao J, Zhao B. 2015. A comparative study on the heavy metal solidification/stabilization performance of four chemical solidifying agents in municipal solid waste incineration fly ash. Journal of Hazardous Materials 300: 451-458.
  • Reference6 Chen et al., 2019; Chen, L., Wang, L., Cho, D. W., Tsang, D. C. W., Tong, L., Zhou, Y., Poon, C. S., 2019. Sustainable stabilization/solidification of municipal solid waste incinerator fly ash by incorporation of green materials. J. Clean. Prod., 222, 335–343. https://doi.org/10.1016/j.jclepro.2019.03.057
  • Reference7 Nzihou, A., & Sharrock, P. (2010). Role of Phosphate in the Remediation and Reuse of Heavy Metal Polluted Wastes and Sites. Waste and Biomass Valorization, 1(1), 163–174. https://doi.org/10.1007/s12649-009-9006-x
  • Reference8 Nriagu, J.O.: Formation and stability of base metal phosphates in soils and sediments. In: Nriagu, J.O., Moore, P.B. (eds.) Phosphate Minerals. Springer–Verlag, London, UK (1984)
  • Reference9 Amerkhanova, S.K., Uali, A.S. & Shlyapov, R.M. Sorption of Heavy Metal Ions from Water by Natural Apatite Ore. J. Water Chem. Technol. 40, 70–76 (2018). https://doi.org/10.3103/S1063455X18020030
  • Reference10. Knox, A.S., Kaplan, D.I., Paller, M.H.: Phosphate sources and their suitability for remediation of contaminated soils. Sci. Total Environ. 357(1–3), 271–279 (2006)
  • Reference11 Dermont, G., Bergeron, M., Mercier, G., Metal-contaminated soils: remediation practices and treatment technologies. Pract. Period. Hazard. Toxic Radioactive Waste Manag. 12(3), 188–209 (2008)
  • Reference12 Manning, D.A.C.: Phosphate minerals, environmental pollution and sustainable agriculture. Elements 4(2), 105–108 (2008)
  • Reference13 Nzihou, A., Sharrock, P.: Calcium phosphate stabilization of fly ash with chloride extraction. Waste Management 22 (2), 235-239 (2002).
  • Reference14 Mu, Y., Saffarzadeh, A., & Shimaoka, T., 2018a. Influence of ignition of waste fishbone on enhancing heavy metal stabilization in municipal solid waste incineration (MSWI) fly ash. J. Clean. Prod., 189, 396–405. https://doi.org/10.1016/J.JCLEPRO.2018.03.301
  • Reference15. Mu, Y., Saffarzadeh, A., & Shimaoka, T., 2018b. Utilization of waste natural fishbone for heavy metal stabilization in municipal solid waste incineration fly ash. J. Clean. Prod., 172, 3111–3118. https://doi.org/10.1016/j.jclepro.2017.11.099
  • Reference16.Saffarzadeh A., Nag M., Nomichi T., Shimaoka T., Nakayama H. and Komiya T., A novel approach for stabilizing heavy metals in municipal solid waste incineration (MSWI) fly ash using waste fishbone hydroxyapatite (FB-HAP), Proceedings of 2nd Euro-Mediterranean conference for Environmental Integration, 10-13 October, 2019, Sousse, Tunisia.
  • Reference17 Nag, M., Saffarzadeh, A., Nomichi, T., Shimaoka, T., & Nakayama, H. (2020). Enhanced Pb and Zn stabilization in municipal solid waste incineration fly ash using waste fishbone hydroxyapatite. Waste Management, 118, 281–290. https://doi.org/10.1016/j.wasman.2020.08.026
  • Reference18. Shashkova, I.L., Rat’ko, A.I., Kitikova, N.V.: Removal of heavy metal ions from aqueous solutions by alkaline-earth metal phosphates. Colloids Surf. A 160(3), 207–215 (1999)
  • Reference19. Sugiyama, S., Fujisawa, M., Koizumi, T., Tanimoto, S., Kawashiro, K., Tomida, T., Hayashi, H.: Immobilization of aqueous heavy metal cations with phosphates and sulfates. Bull. Chem. Soc. Jpn. 76(12), 2419–2422 (2003)
  • Reference20. Deydier, E., Guilet, R., Cren, S., Pereas, V., Mouchet, F., Gauthier, L.: Evaluation of meat and bone meal combustion residue as lead immobilizing material for in situ remediation of polluted aqueous solutions and soils: ‘‘Chemical and ecotoxicological studies’’. J. Hazard. Mater. 146(1–2), 227–236 (1999)
  • Reference21. Cheung, C.W., Porter, J.F., McKay, G.: Removal of Cu(II) and Zn(II) ions by sorption onto bone char using batch agitation. Langmuir 18(3), 650–656 (2002)
  • Reference22. Suzuki, Y., Takeuchi, Y.: Uptake of a few divalent heavy metal ionic species by a fixed bed of hydroxyapatite particles. J. Chem. Eng. Jpn. 27(5), 571–576 (1994) Reference23. Manecki, M., Maurice, P.A., Traina, S.J.: Kinetics of aqueousPb reaction with apatites. Soil Sci. 165(12), 920–933 (2000)
  • Reference24. Manecki, M., Maurice, P.A., Traina, S.J.: Uptake of aqueous Pb by Cl-, F-, and OH- apatites: mineralogic evidence for nucleation mechanisms. Am. Miner. 85(7–8), 932–942 (2000)
  • Reference25. Lower, S.K., Maurice, P.A., Traina, S.J., Carlson, E.H.: AqueousPb sorption by hydroxylapatite: applications of atomic forcemicroscopy to dissolution, nucleation, and growth studies. Am. Miner. 83(1–2), 147–158 (1998)
  • Reference26. Sto¨tzel, C., Mu¨ ller, F.A., Reinert, F., Niederdraenk, F., Barralet, J.E., Gbureck, U.: Ion adsorption behaviour of hydroxyapatite with different crystallinities. Colloids Surf. B Biointerfaces 74(1), 91–95 (2009)
  • Reference27. Takeuchi, Y., Arai, H.: Hironori Removal of coexisting Pb2? Cu2? and Cd2? ions from water by addition of hydroxyapatite powder. J. Chem. Eng. Jpn. 23(1), 75–80 (1990)
  • Reference28. Hashimoto, Y., Sato, T.: Removal of aqueous lead by poorly-crystalline hydroxyapatites. Chemosphere 69(11), 1775–1782 (2007)
  • Reference29. Xu, Y., Schwartz, F.W.: Lead immobilization by hydroxyapatite in aqueous solutions. J. Contam. Hydrol. 15(3), 187–206 (1994)
  • Reference30. Sugiyama, S., Ichii, T., Hayashi, H., Tomida, T.: Lead immobilization by non-apatite-type calcium phosphates in aqueous solutions. Inorg. Chem. Commun. 5(2), 156–158 (2002)
  • Reference31. 20. Lusvardi, G., Malavasi, G., Menabue, L., Saladini, M.: Removal of cadmium ion by means of synthetic hydroxyapatite. Waste Manag. 22(8), 853–857 (2002)
  • Reference32. Monteil-Rivera, F., Fedoroff, M.: Sorption of inorganic species on apatites from aqueous solutions. Encyclopedia Surf. Colloid Sci. 1, 1–26 (2002)
  • Reference33. Olszta, M. J., Cheng, X., Jee, S. S., Kumar, R., Kim, Y. Y., Kaufman, M. J., … Gower, L. B. (2007). Bone structure and formation: A new perspective. Materials Science and Engineering R: Reports, 58(3–5), 77–116. https://doi.org/10.1016/j.mser.2007.05.001
  • Reference34. Fermo, P., Cariati, F., Pozzi, A., Demartin, F., Tettamanti, M., Collina, E., Russo, U., 1999. The analytical characterization of municipal solid waste incinerator fly ash: Methods and preliminary results. Fresenius’ J. Analyt. Chem. 365 (8), 666–673. https://doi.org/10.1007/s002160051543.
  • Reference35 Hasany, S. M., Saeed, M. M., & Ahmed, M. (2002). Sorption and thermodynamic behavior of zinc(II)-thiocyanate complexes onto polyurethane foam from acidic solutions. Journal of Radioanalytical and Nuclear Chemistry 2002 252:3, 252(3), 477–484. https://doi.org/10.1023/A:1015890317697
  • Reference36 Kitamura 2016 Kitamura, H., Sawada, T., Shimaoka, T., & Takahashi, F., 2016. Geochemically structural characteristics of municipal solid waste incineration fly ash particles and mineralogical surface conversions by chelate treatment. ENVIRON SCI POLLUT R., 23(1), 734–743. https://doi.org/10.1007/s11356-015-5229-5
Year 2022, Volume: 5 Issue: 2, 137 - 147, 30.06.2022
https://doi.org/10.35208/ert.998326

Abstract

Project Number

Grant-in-Aid for Scientific Research (C) no. 18K11697

References

  • Reference1 Ferreira C, Ribeiro A, Ottosen L. 2003. Possible applications for municipal solid waste fly ash. Journal of Hazardous Materials 96(2–3): 201-216.
  • Reference2 Ministry of the Environment of Japan. 2013. The outline of waste treatment in Japan: results of fiscal year. Ministry of the Environment of Japan.
  • Reference3. Zhang, Z., Li, A., Wang, X., & Zhang, L. (2016). Stabilization/solidification of municipal solid waste incineration fly ash via co-sintering with waste-derived vitrified amorphous slag. Waste Manage., 56, 238–245. https://doi.org/10.1016/j.wasman.2016.07.002
  • Reference4 Garcia-Lodeiro, I., Carcelen-Taboada, V., Fernández-Jiménez, A., & Palomo, A. (2016). Manufacture of hybrid cements with fly ash and bottom ash from a municipal solid waste incinerator. Constr. Build. Mater, 105, 218–226. https://doi.org/10.1016/j.conbuildmat.2015.12.079
  • Reference5 Wang F, Zhang F, Chen Y, Gao J, Zhao B. 2015. A comparative study on the heavy metal solidification/stabilization performance of four chemical solidifying agents in municipal solid waste incineration fly ash. Journal of Hazardous Materials 300: 451-458.
  • Reference6 Chen et al., 2019; Chen, L., Wang, L., Cho, D. W., Tsang, D. C. W., Tong, L., Zhou, Y., Poon, C. S., 2019. Sustainable stabilization/solidification of municipal solid waste incinerator fly ash by incorporation of green materials. J. Clean. Prod., 222, 335–343. https://doi.org/10.1016/j.jclepro.2019.03.057
  • Reference7 Nzihou, A., & Sharrock, P. (2010). Role of Phosphate in the Remediation and Reuse of Heavy Metal Polluted Wastes and Sites. Waste and Biomass Valorization, 1(1), 163–174. https://doi.org/10.1007/s12649-009-9006-x
  • Reference8 Nriagu, J.O.: Formation and stability of base metal phosphates in soils and sediments. In: Nriagu, J.O., Moore, P.B. (eds.) Phosphate Minerals. Springer–Verlag, London, UK (1984)
  • Reference9 Amerkhanova, S.K., Uali, A.S. & Shlyapov, R.M. Sorption of Heavy Metal Ions from Water by Natural Apatite Ore. J. Water Chem. Technol. 40, 70–76 (2018). https://doi.org/10.3103/S1063455X18020030
  • Reference10. Knox, A.S., Kaplan, D.I., Paller, M.H.: Phosphate sources and their suitability for remediation of contaminated soils. Sci. Total Environ. 357(1–3), 271–279 (2006)
  • Reference11 Dermont, G., Bergeron, M., Mercier, G., Metal-contaminated soils: remediation practices and treatment technologies. Pract. Period. Hazard. Toxic Radioactive Waste Manag. 12(3), 188–209 (2008)
  • Reference12 Manning, D.A.C.: Phosphate minerals, environmental pollution and sustainable agriculture. Elements 4(2), 105–108 (2008)
  • Reference13 Nzihou, A., Sharrock, P.: Calcium phosphate stabilization of fly ash with chloride extraction. Waste Management 22 (2), 235-239 (2002).
  • Reference14 Mu, Y., Saffarzadeh, A., & Shimaoka, T., 2018a. Influence of ignition of waste fishbone on enhancing heavy metal stabilization in municipal solid waste incineration (MSWI) fly ash. J. Clean. Prod., 189, 396–405. https://doi.org/10.1016/J.JCLEPRO.2018.03.301
  • Reference15. Mu, Y., Saffarzadeh, A., & Shimaoka, T., 2018b. Utilization of waste natural fishbone for heavy metal stabilization in municipal solid waste incineration fly ash. J. Clean. Prod., 172, 3111–3118. https://doi.org/10.1016/j.jclepro.2017.11.099
  • Reference16.Saffarzadeh A., Nag M., Nomichi T., Shimaoka T., Nakayama H. and Komiya T., A novel approach for stabilizing heavy metals in municipal solid waste incineration (MSWI) fly ash using waste fishbone hydroxyapatite (FB-HAP), Proceedings of 2nd Euro-Mediterranean conference for Environmental Integration, 10-13 October, 2019, Sousse, Tunisia.
  • Reference17 Nag, M., Saffarzadeh, A., Nomichi, T., Shimaoka, T., & Nakayama, H. (2020). Enhanced Pb and Zn stabilization in municipal solid waste incineration fly ash using waste fishbone hydroxyapatite. Waste Management, 118, 281–290. https://doi.org/10.1016/j.wasman.2020.08.026
  • Reference18. Shashkova, I.L., Rat’ko, A.I., Kitikova, N.V.: Removal of heavy metal ions from aqueous solutions by alkaline-earth metal phosphates. Colloids Surf. A 160(3), 207–215 (1999)
  • Reference19. Sugiyama, S., Fujisawa, M., Koizumi, T., Tanimoto, S., Kawashiro, K., Tomida, T., Hayashi, H.: Immobilization of aqueous heavy metal cations with phosphates and sulfates. Bull. Chem. Soc. Jpn. 76(12), 2419–2422 (2003)
  • Reference20. Deydier, E., Guilet, R., Cren, S., Pereas, V., Mouchet, F., Gauthier, L.: Evaluation of meat and bone meal combustion residue as lead immobilizing material for in situ remediation of polluted aqueous solutions and soils: ‘‘Chemical and ecotoxicological studies’’. J. Hazard. Mater. 146(1–2), 227–236 (1999)
  • Reference21. Cheung, C.W., Porter, J.F., McKay, G.: Removal of Cu(II) and Zn(II) ions by sorption onto bone char using batch agitation. Langmuir 18(3), 650–656 (2002)
  • Reference22. Suzuki, Y., Takeuchi, Y.: Uptake of a few divalent heavy metal ionic species by a fixed bed of hydroxyapatite particles. J. Chem. Eng. Jpn. 27(5), 571–576 (1994) Reference23. Manecki, M., Maurice, P.A., Traina, S.J.: Kinetics of aqueousPb reaction with apatites. Soil Sci. 165(12), 920–933 (2000)
  • Reference24. Manecki, M., Maurice, P.A., Traina, S.J.: Uptake of aqueous Pb by Cl-, F-, and OH- apatites: mineralogic evidence for nucleation mechanisms. Am. Miner. 85(7–8), 932–942 (2000)
  • Reference25. Lower, S.K., Maurice, P.A., Traina, S.J., Carlson, E.H.: AqueousPb sorption by hydroxylapatite: applications of atomic forcemicroscopy to dissolution, nucleation, and growth studies. Am. Miner. 83(1–2), 147–158 (1998)
  • Reference26. Sto¨tzel, C., Mu¨ ller, F.A., Reinert, F., Niederdraenk, F., Barralet, J.E., Gbureck, U.: Ion adsorption behaviour of hydroxyapatite with different crystallinities. Colloids Surf. B Biointerfaces 74(1), 91–95 (2009)
  • Reference27. Takeuchi, Y., Arai, H.: Hironori Removal of coexisting Pb2? Cu2? and Cd2? ions from water by addition of hydroxyapatite powder. J. Chem. Eng. Jpn. 23(1), 75–80 (1990)
  • Reference28. Hashimoto, Y., Sato, T.: Removal of aqueous lead by poorly-crystalline hydroxyapatites. Chemosphere 69(11), 1775–1782 (2007)
  • Reference29. Xu, Y., Schwartz, F.W.: Lead immobilization by hydroxyapatite in aqueous solutions. J. Contam. Hydrol. 15(3), 187–206 (1994)
  • Reference30. Sugiyama, S., Ichii, T., Hayashi, H., Tomida, T.: Lead immobilization by non-apatite-type calcium phosphates in aqueous solutions. Inorg. Chem. Commun. 5(2), 156–158 (2002)
  • Reference31. 20. Lusvardi, G., Malavasi, G., Menabue, L., Saladini, M.: Removal of cadmium ion by means of synthetic hydroxyapatite. Waste Manag. 22(8), 853–857 (2002)
  • Reference32. Monteil-Rivera, F., Fedoroff, M.: Sorption of inorganic species on apatites from aqueous solutions. Encyclopedia Surf. Colloid Sci. 1, 1–26 (2002)
  • Reference33. Olszta, M. J., Cheng, X., Jee, S. S., Kumar, R., Kim, Y. Y., Kaufman, M. J., … Gower, L. B. (2007). Bone structure and formation: A new perspective. Materials Science and Engineering R: Reports, 58(3–5), 77–116. https://doi.org/10.1016/j.mser.2007.05.001
  • Reference34. Fermo, P., Cariati, F., Pozzi, A., Demartin, F., Tettamanti, M., Collina, E., Russo, U., 1999. The analytical characterization of municipal solid waste incinerator fly ash: Methods and preliminary results. Fresenius’ J. Analyt. Chem. 365 (8), 666–673. https://doi.org/10.1007/s002160051543.
  • Reference35 Hasany, S. M., Saeed, M. M., & Ahmed, M. (2002). Sorption and thermodynamic behavior of zinc(II)-thiocyanate complexes onto polyurethane foam from acidic solutions. Journal of Radioanalytical and Nuclear Chemistry 2002 252:3, 252(3), 477–484. https://doi.org/10.1023/A:1015890317697
  • Reference36 Kitamura 2016 Kitamura, H., Sawada, T., Shimaoka, T., & Takahashi, F., 2016. Geochemically structural characteristics of municipal solid waste incineration fly ash particles and mineralogical surface conversions by chelate treatment. ENVIRON SCI POLLUT R., 23(1), 734–743. https://doi.org/10.1007/s11356-015-5229-5
There are 35 citations in total.

Details

Primary Language English
Subjects Environmental Engineering
Journal Section Research Articles
Authors

Mitali Nag 0000-0001-6438-5278

Amirhomayoun Saffarzadeh This is me 0000-0002-1439-4982

Takayuki Shimaoka This is me 0000-0002-3475-0825

Hirofumi Nakayama This is me 0000-0002-7598-4177

Project Number Grant-in-Aid for Scientific Research (C) no. 18K11697
Publication Date June 30, 2022
Submission Date September 25, 2021
Acceptance Date March 9, 2022
Published in Issue Year 2022 Volume: 5 Issue: 2

Cite

APA Nag, M., Saffarzadeh, A., Shimaoka, T., Nakayama, H. (2022). Degree of Pb stabilization in MSWI fly ash using size-fractionated natural fishbone hydroxyapatite. Environmental Research and Technology, 5(2), 137-147. https://doi.org/10.35208/ert.998326
AMA Nag M, Saffarzadeh A, Shimaoka T, Nakayama H. Degree of Pb stabilization in MSWI fly ash using size-fractionated natural fishbone hydroxyapatite. ERT. June 2022;5(2):137-147. doi:10.35208/ert.998326
Chicago Nag, Mitali, Amirhomayoun Saffarzadeh, Takayuki Shimaoka, and Hirofumi Nakayama. “Degree of Pb Stabilization in MSWI Fly Ash Using Size-Fractionated Natural Fishbone Hydroxyapatite”. Environmental Research and Technology 5, no. 2 (June 2022): 137-47. https://doi.org/10.35208/ert.998326.
EndNote Nag M, Saffarzadeh A, Shimaoka T, Nakayama H (June 1, 2022) Degree of Pb stabilization in MSWI fly ash using size-fractionated natural fishbone hydroxyapatite. Environmental Research and Technology 5 2 137–147.
IEEE M. Nag, A. Saffarzadeh, T. Shimaoka, and H. Nakayama, “Degree of Pb stabilization in MSWI fly ash using size-fractionated natural fishbone hydroxyapatite”, ERT, vol. 5, no. 2, pp. 137–147, 2022, doi: 10.35208/ert.998326.
ISNAD Nag, Mitali et al. “Degree of Pb Stabilization in MSWI Fly Ash Using Size-Fractionated Natural Fishbone Hydroxyapatite”. Environmental Research and Technology 5/2 (June 2022), 137-147. https://doi.org/10.35208/ert.998326.
JAMA Nag M, Saffarzadeh A, Shimaoka T, Nakayama H. Degree of Pb stabilization in MSWI fly ash using size-fractionated natural fishbone hydroxyapatite. ERT. 2022;5:137–147.
MLA Nag, Mitali et al. “Degree of Pb Stabilization in MSWI Fly Ash Using Size-Fractionated Natural Fishbone Hydroxyapatite”. Environmental Research and Technology, vol. 5, no. 2, 2022, pp. 137-4, doi:10.35208/ert.998326.
Vancouver Nag M, Saffarzadeh A, Shimaoka T, Nakayama H. Degree of Pb stabilization in MSWI fly ash using size-fractionated natural fishbone hydroxyapatite. ERT. 2022;5(2):137-4.