FIBONACCI AND LUCAS NUMBERS AS PRODUCTS OF THEIR ARBITRARY TERMS
Year 2024,
, 407 - 414, 30.09.2024
Ahmet Daşdemir
,
Ahmet Emin
Abstract
This study presents all solutions to the Diophantine equations F_k=L_m L_n and L_k=F_m F_n. To be clear, the Fibonacci numbers that are the product of two arbitrary Lucas numbers and the Lucas numbers that are the product of two arbitrary Fibonacci numbers are determined herein. The results under consideration are proven by using the Dujella-Pethő lemma in coordination with Matveev's theorem. All common terms of the Fibonacci and Lucas numbers are determined. Further, the Lucas-square Fibonacci and Fibonacci-square Lucas numbers are given.
References
- [1] Koshy T. Fibonacci and Lucas numbers with applications. New York, USA: Wiley, 2019.
- [2] Vajda S. Fibonacci and Lucas numbers, and the golden section: theory and applications. New York, USA: Courier Corporation, 2008.
- [3] Vorobiev NN. Fibonacci numbers. Berlin, Germany: Springer Science & Business Media, 2002.
- [4] Marques D. On generalized Cullen and Woodall numbers that are also Fibonacci numbers. Journal of Integer Sequences 2014; 17(9): 14-9.
- [5] Chaves AP, Marques D. A Diophantine equation related to the sum of powers of two consecutive generalized Fibonacci numbers. Journal of Number Theory 2015; 156: 1-14.
- [6] Bravo JJ, Gómez CA. Mersenne k-Fibonacci numbers. Glasnik Matematički 2016; 51(2): 307-319.
- [7] Pongsriiam P. Fibonacci and Lucas numbers which are one away from their products. Fibonacci Quarterly 2017; 55(1): 29-40.
- [8] Ddamulira M, Gómez CA, Luca F. On a problem of Pillai with k–generalized Fibonacci numbers and powers of 2. Monatshefte für Mathematik 2018; 187: 635-664.
- [9] Kafle B, Luca F, Montejano A, Szalay L, Togbé A. On the x-coordinates of Pell equations which are products of two Fibonacci numbers. Journal of Number Theory 2019; 203: 310-333.
- [10] Qu Y, Zeng J. Lucas numbers which are concatenations of two repdigits. Mathematics 2020; 8(8): 1360.
- [11] Şiar Z, Keskin R, Erduvan F. Fibonacci or Lucas numbers which are products of two repdigits in base b. Bulletin of the Brazilian Mathematical Society, New Series 2021; 52: 1025–1040.
- [12] Alan M, Alan KS. Mersenne numbers which are products of two Pell numbers. Boletín de la Sociedad Matemática Mexicana 2022; 28(2): 38.
- [13] Rihane SE, Togbé A. k-Fibonacci numbers which are Padovan or Perrin numbers. Indian Journal of Pure and Applied Mathematics 2023; 54(2): 568-582.
- [14] Alekseyev MA. On the intersections of Fibonacci, Pell, and Lucas numbers. Integers 2011; 11(3): 239-259.
- [15] Ddamulira M, Luca F, Rakotomalala M. Fibonacci Numbers which are products of two Pell Numbers. Fibonacci Quarterly 2016; 54(1): 11-18.
- [16] Bravo JJ, Herrera JL, Luca F. Common values of generalized Fibonacci and Pell sequences. Journal of Number Theory 2021; 226: 51-71.
- [17] Erduvan F, Keskin R. Fibonacci numbers which are products of two Jacobsthal numbers. Tbilisi Mathematical Journal 2021; 14(2): 105-116.
- [18] Bensella H, Behloul D. Common terms of Leonardo and Jacobsthal numbers. Rendiconti del Circolo Matematico di Palermo Series 2023; 2: 1-7.
- [19] Carlitz L. A note on Fibonacci numbers. Fibonacci Quarterly 1964: 2(1): 15–28.
- [20] Wang M, Yang P, Yang Y. Carlitz’s equations on generalized Fibonacci numbers. Symmetry 2022; 14(4): 764.
- [21] Matveev EM. An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers. II. Izvestiya Mathematics 2000; 64(6): 1217–1269.
- [22] Dujella A, Pethő A. A generalization of a theorem of Baker and Davenport, The Quarterly Journal of Mathematics 1998; 49(195): 291–30.
Year 2024,
, 407 - 414, 30.09.2024
Ahmet Daşdemir
,
Ahmet Emin
References
- [1] Koshy T. Fibonacci and Lucas numbers with applications. New York, USA: Wiley, 2019.
- [2] Vajda S. Fibonacci and Lucas numbers, and the golden section: theory and applications. New York, USA: Courier Corporation, 2008.
- [3] Vorobiev NN. Fibonacci numbers. Berlin, Germany: Springer Science & Business Media, 2002.
- [4] Marques D. On generalized Cullen and Woodall numbers that are also Fibonacci numbers. Journal of Integer Sequences 2014; 17(9): 14-9.
- [5] Chaves AP, Marques D. A Diophantine equation related to the sum of powers of two consecutive generalized Fibonacci numbers. Journal of Number Theory 2015; 156: 1-14.
- [6] Bravo JJ, Gómez CA. Mersenne k-Fibonacci numbers. Glasnik Matematički 2016; 51(2): 307-319.
- [7] Pongsriiam P. Fibonacci and Lucas numbers which are one away from their products. Fibonacci Quarterly 2017; 55(1): 29-40.
- [8] Ddamulira M, Gómez CA, Luca F. On a problem of Pillai with k–generalized Fibonacci numbers and powers of 2. Monatshefte für Mathematik 2018; 187: 635-664.
- [9] Kafle B, Luca F, Montejano A, Szalay L, Togbé A. On the x-coordinates of Pell equations which are products of two Fibonacci numbers. Journal of Number Theory 2019; 203: 310-333.
- [10] Qu Y, Zeng J. Lucas numbers which are concatenations of two repdigits. Mathematics 2020; 8(8): 1360.
- [11] Şiar Z, Keskin R, Erduvan F. Fibonacci or Lucas numbers which are products of two repdigits in base b. Bulletin of the Brazilian Mathematical Society, New Series 2021; 52: 1025–1040.
- [12] Alan M, Alan KS. Mersenne numbers which are products of two Pell numbers. Boletín de la Sociedad Matemática Mexicana 2022; 28(2): 38.
- [13] Rihane SE, Togbé A. k-Fibonacci numbers which are Padovan or Perrin numbers. Indian Journal of Pure and Applied Mathematics 2023; 54(2): 568-582.
- [14] Alekseyev MA. On the intersections of Fibonacci, Pell, and Lucas numbers. Integers 2011; 11(3): 239-259.
- [15] Ddamulira M, Luca F, Rakotomalala M. Fibonacci Numbers which are products of two Pell Numbers. Fibonacci Quarterly 2016; 54(1): 11-18.
- [16] Bravo JJ, Herrera JL, Luca F. Common values of generalized Fibonacci and Pell sequences. Journal of Number Theory 2021; 226: 51-71.
- [17] Erduvan F, Keskin R. Fibonacci numbers which are products of two Jacobsthal numbers. Tbilisi Mathematical Journal 2021; 14(2): 105-116.
- [18] Bensella H, Behloul D. Common terms of Leonardo and Jacobsthal numbers. Rendiconti del Circolo Matematico di Palermo Series 2023; 2: 1-7.
- [19] Carlitz L. A note on Fibonacci numbers. Fibonacci Quarterly 1964: 2(1): 15–28.
- [20] Wang M, Yang P, Yang Y. Carlitz’s equations on generalized Fibonacci numbers. Symmetry 2022; 14(4): 764.
- [21] Matveev EM. An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers. II. Izvestiya Mathematics 2000; 64(6): 1217–1269.
- [22] Dujella A, Pethő A. A generalization of a theorem of Baker and Davenport, The Quarterly Journal of Mathematics 1998; 49(195): 291–30.