Research Article
BibTex RIS Cite

Longitudinal Stability Analysis of a UAV under the Uncertainty of Two Stability Derivatives

Year 2018, Volume: 19 Issue: 4, 831 - 843, 31.12.2018
https://doi.org/10.18038/aubtda.405179

Abstract

The longitudinal stability analysis of an aircraft is performed by the investigation of root locations of its transfer function’s denominator (the characteristic equation). However, this transfer function is obtained by linearizing aircraft dynamic model at a certain operation point (altitude and speed). However, aircraft have varying stability derivatives, therefore dynamic behavior, for different flight phases such as take-off, cruise, and landing. Thus, the stability investigation of the characteristic equation can be said to be valid only for a certain flight condition. In reality, stability derivatives have varying values depending on flight conditions. Therefore, an analysis including all possible values of stability derivatives in the flight envelope is required to guarantee stability. In this study, two most varying stability derivatives in the transfer function were taken as uncertain parameters. Gridding these two parameters to check the stability of the UAV for all possible flight conditions can be thought as a method, but it is very time-consuming, and it cannot assure the stability theoretically. A new simple approach, guaranteeing stability under the uncertainty of two stability derivatives, is developed by using the Edge and Bialas theorems. Here, the problem of the investigation of the stability under the uncertainty of two stability derivatives is reduced to the analysis of four polynomials. Thus, the stability characteristics of an airplane for a given flight envelope can be easily determined by just looking at the eigenvalues of the matrices obtained from these four polynomials.

References

  • Yechout T.R., Morris S.L., Bossert D.E., and Hallgren W.F. Introduction To Aircraft Flight Mechanics: Performance, Static Stability, Dynamic Stability And Classical Feedback, AIAA, 2003.
  • Blakelock J.H., Automatic Control of Aircraft and Missiles, 1st edition, John Wiley & Sons, New York, 1965.
  • Roskam J., Airplane Flight Dynamics And Automatic Controls, DARcorporation, USA, 2003.
  • Oznalbant Z., Kavsaoglu M. S., and Cavcar M., Design, Flight Mechanics and Flight Demonstration of a Tiltable Propeller VTOL UAV”, presented at 16th AIAA Aviation Technology, Integration and Operations Conference, AIAA Aviation Forum, 2016.
  • Sadraey M. H., Design of a Nonlinear Robust Controller for a Complete Unmanned Aerial Vehicle Mission, Ph.D. Thesis, University of Kansas, 1995.
  • Soylemez M. T., Pole Assignment for Uncertain Systems, Research Studies Press (RSP), Baldock, UK, 1999.
  • Ackerman J., Robust Control: The Parameter Space Approach, Springer, New York, London, 2002.
  • Bialas S., A Necessary And Sufficient Condition For The Stability Of Convex Combinations Of Stable Polynomials Or Matrices, Bull. Polish Academy of Sciences, vol. 33, no. 9-10, pp.473-480, 1988.
  • Bialas S., and Garloof J., Convex Combination Of Stable Polynomials, J. of the Franklin Inst., vol. 319, no.3, pp. 373-377, 1985.
Year 2018, Volume: 19 Issue: 4, 831 - 843, 31.12.2018
https://doi.org/10.18038/aubtda.405179

Abstract

References

  • Yechout T.R., Morris S.L., Bossert D.E., and Hallgren W.F. Introduction To Aircraft Flight Mechanics: Performance, Static Stability, Dynamic Stability And Classical Feedback, AIAA, 2003.
  • Blakelock J.H., Automatic Control of Aircraft and Missiles, 1st edition, John Wiley & Sons, New York, 1965.
  • Roskam J., Airplane Flight Dynamics And Automatic Controls, DARcorporation, USA, 2003.
  • Oznalbant Z., Kavsaoglu M. S., and Cavcar M., Design, Flight Mechanics and Flight Demonstration of a Tiltable Propeller VTOL UAV”, presented at 16th AIAA Aviation Technology, Integration and Operations Conference, AIAA Aviation Forum, 2016.
  • Sadraey M. H., Design of a Nonlinear Robust Controller for a Complete Unmanned Aerial Vehicle Mission, Ph.D. Thesis, University of Kansas, 1995.
  • Soylemez M. T., Pole Assignment for Uncertain Systems, Research Studies Press (RSP), Baldock, UK, 1999.
  • Ackerman J., Robust Control: The Parameter Space Approach, Springer, New York, London, 2002.
  • Bialas S., A Necessary And Sufficient Condition For The Stability Of Convex Combinations Of Stable Polynomials Or Matrices, Bull. Polish Academy of Sciences, vol. 33, no. 9-10, pp.473-480, 1988.
  • Bialas S., and Garloof J., Convex Combination Of Stable Polynomials, J. of the Franklin Inst., vol. 319, no.3, pp. 373-377, 1985.
There are 9 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Uğur Özdemir This is me

Mehmet Serif Kavsaoglu This is me

Zafer Oznalbant This is me

Unver Kaynak This is me

Publication Date December 31, 2018
Published in Issue Year 2018 Volume: 19 Issue: 4

Cite

AMA Özdemir U, Kavsaoglu MS, Oznalbant Z, Kaynak U. Longitudinal Stability Analysis of a UAV under the Uncertainty of Two Stability Derivatives. Estuscience - Se. December 2018;19(4):831-843. doi:10.18038/aubtda.405179