Research Article
BibTex RIS Cite

THE STUDY OF CLASSICS PARTICLES' ENERGY AT ARCHIMEDEAN SOLIDS WITH CLIFFORD ALGEBRA

Year 2019, Volume: 20 , 170 - 180, 16.12.2019
https://doi.org/10.18038/estubtda.649511

Abstract

Geometric
algebras known as a generalization of Grassmann algebras complex numbers and
quaternions are presented by Clifford (1878). 
Geometric algebra describing the geometric symmetries of both physical
space and spacetime is a strong language for physics. Groups generated from
`Clifford numbers` are firstly defined by Lipschitz (1886).  They are used for defining rotations in a
Euclidean space. In this work, Clifford algebra is identified. The energy of
classic particles with Clifford algebra are defined. This calculations are
applied to some Archimedean solids. Also, the vertices of Archimedean solids
presented in the Cartesian coordinates are calculated.

References

  • [1] C. Doran, A. Lasenby, Geometric Algebra for Physicists.
  • [2] M. Kline, Mathematical Thought from Ancient to Modern Times. Oxford University Press, Oxford (1972).
  • [3] W. K. Clifford, Am. J. Math. 1(1878) 350.
  • [4] S. L. Altmann, Rotations, quaternions, and double groups. Clarendon Press, Oxford (1994).
  • [5] A. Kilic, K. Ozdas, M. Tanisli, An Investigation of Symmetry Operations with Clif¬ford Algebra 54(3) (2004).
  • [6] P. R. Girard, Quaternions, Clifford Algebra, and Relativistic Physics.
  • [7] J. Funda, R. P. Paul, A Comparison of Transforms and Quaternions in Physics, Proc. of 1988 IEEE Int. Conference on Robotics and Automation, Philadelphia, 1988, p.886.
  • [8] M. Tanışlı, Acta Physica Slovaca, 53(3) (2003) 253. Turkey, 2012.
  • [9] O. Rodriques, Journal de Mathematiques Pures et Appliquees 5 (1840) 380.
  • [10] P. Lounesto, Lectures on Clifford Geometric Algebras. TTU Press, Cookeville, TN, USA (2002)
  • [11] B. Jancewicz, Multivectors and Clifford Algebra in Electrodynamics. [12] J. Snygg: Clifford Algebra.
  • [13] A. Pokorny, P. Herzig, S. L. Altman, Spectrochimica Acta A 57 (2001) 1931.
  • [14] R. Williams, The Geometrical Foundation of Natural Structure.
  • [15] S. J. R. Anderson, G. C. Joshi: Physics Essays 6 (1993), 308.
Year 2019, Volume: 20 , 170 - 180, 16.12.2019
https://doi.org/10.18038/estubtda.649511

Abstract

References

  • [1] C. Doran, A. Lasenby, Geometric Algebra for Physicists.
  • [2] M. Kline, Mathematical Thought from Ancient to Modern Times. Oxford University Press, Oxford (1972).
  • [3] W. K. Clifford, Am. J. Math. 1(1878) 350.
  • [4] S. L. Altmann, Rotations, quaternions, and double groups. Clarendon Press, Oxford (1994).
  • [5] A. Kilic, K. Ozdas, M. Tanisli, An Investigation of Symmetry Operations with Clif¬ford Algebra 54(3) (2004).
  • [6] P. R. Girard, Quaternions, Clifford Algebra, and Relativistic Physics.
  • [7] J. Funda, R. P. Paul, A Comparison of Transforms and Quaternions in Physics, Proc. of 1988 IEEE Int. Conference on Robotics and Automation, Philadelphia, 1988, p.886.
  • [8] M. Tanışlı, Acta Physica Slovaca, 53(3) (2003) 253. Turkey, 2012.
  • [9] O. Rodriques, Journal de Mathematiques Pures et Appliquees 5 (1840) 380.
  • [10] P. Lounesto, Lectures on Clifford Geometric Algebras. TTU Press, Cookeville, TN, USA (2002)
  • [11] B. Jancewicz, Multivectors and Clifford Algebra in Electrodynamics. [12] J. Snygg: Clifford Algebra.
  • [13] A. Pokorny, P. Herzig, S. L. Altman, Spectrochimica Acta A 57 (2001) 1931.
  • [14] R. Williams, The Geometrical Foundation of Natural Structure.
  • [15] S. J. R. Anderson, G. C. Joshi: Physics Essays 6 (1993), 308.
There are 14 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Şadiye Çakmak This is me 0000-0001-9256-0571

Abidin Kılıç 0000-0003-4567-5207

Publication Date December 16, 2019
Published in Issue Year 2019 Volume: 20

Cite

AMA Çakmak Ş, Kılıç A. THE STUDY OF CLASSICS PARTICLES’ ENERGY AT ARCHIMEDEAN SOLIDS WITH CLIFFORD ALGEBRA. Estuscience - Se. December 2019;20:170-180. doi:10.18038/estubtda.649511