Research Article
BibTex RIS Cite

ON THE FUZZIFICATION OF GREEK PLANES OF KLEIN QUADRIC

Year 2024, Volume: 25 Issue: 2, 300 - 307, 28.06.2024
https://doi.org/10.18038/estubtda.1481317

Abstract

A projective space of dimension 3 over a finite Galois field GF(q) is denoted as PG(3,q). It is defined as the set of all one-dimensional subspaces of 4-dimensional vector space over this Galois field. Klein transformation maps a projective plane of PG(3,2) to a Greek plane of the Klein quadric. This paper introduces the fuzzification of Greek planes passing through the base point, any point on the base line different from the base point, and any point not on the base line of the base plane of 5-dimensional fuzzy projective space.

References

  • [1] Akça Z, Bayar A, Ekmekçi S, Van Maldeghem H. Fuzzy Projective Spreads of Fuzzy Projective Spaces, Fuzzy Sets and Systems, 2006; 157(24): 3237-3247.
  • [2] Akça Z, Bayar A, Ekmekçi S. On the classification of Fuzzy projective lines of Fuzzy 3-dimensional projective spaces, Communications Mathematics and Statistics, 2007; 55(2): 17-23.
  • [3] Akça Z, Altıntaş A. Fuzzy Counterpart of Klein Quadric, International Electronic Journal of Geometry, 2023; 16(2): 680–688.
  • [4] Bayar A, Akça Z, Ekmekçi S. A Note on Fibered Projective Plane Geometry, Information Science, 2008; 178: 1257-1262.
  • [5] Ekmekçi S, Bayar A, Akça Z. On the classification of Fuzzy projective planes of Fuzzy 3-dimensional projective spaces, Chaos, Solitons and Fractals, 2009; 40: 2146-2151.
  • [6] Hirschfeld JWP. Projective Geometries over Finite Fields, Oxford Mathematical Monographs, 1998.
  • [7] Klein F. Uber die Transformation der allgemeinen Gleichung des zweiten Grades zwischen Linien-Koordinaten auf eine kanonische, Form Math., 1868; 539-578.
  • [8] Kuijken L, Van Maldeghem H, Kerre E.E, Fuzzy projective geometries from fuzzy vector spaces, in: A. Billot et al. (Eds.), Information Processing and Management of Uncertainty in Knowledge-based Systems, Editions Medicales et Scientifiques, Paris, La Sorbonne, 1998; 1331-1338.
  • [9] Lubczonok P. Fuzzy Vector Spaces, Fuzzy Sets and Systems, 1990; 38: 329-343.
  • [10] Plucker J. On a New Geometry of Space, Philosophical Transactions of the Royal Society of London, 1865; 155: 725-791.
  • [11] Zadeh L. Fuzzy sets, Information control, 1965; 8: 338-353.

ON THE FUZZIFICATION OF GREEK PLANES OF KLEIN QUADRIC

Year 2024, Volume: 25 Issue: 2, 300 - 307, 28.06.2024
https://doi.org/10.18038/estubtda.1481317

Abstract

A projective space of dimension 3 over a finite Galois field GF(q) is denoted as PG(3,q). It is defined as the set of all one-dimensional subspaces of 4-dimensional vector space over this Galois field. Klein transformation maps a projective plane of PG(3,2) to a Greek plane of the Klein quadric. This paper introduces the fuzzification of Greek planes passing through the base point, any point on the base line different from the base point, and any point not on the base line of the base plane of 5-dimensional fuzzy projective space.

References

  • [1] Akça Z, Bayar A, Ekmekçi S, Van Maldeghem H. Fuzzy Projective Spreads of Fuzzy Projective Spaces, Fuzzy Sets and Systems, 2006; 157(24): 3237-3247.
  • [2] Akça Z, Bayar A, Ekmekçi S. On the classification of Fuzzy projective lines of Fuzzy 3-dimensional projective spaces, Communications Mathematics and Statistics, 2007; 55(2): 17-23.
  • [3] Akça Z, Altıntaş A. Fuzzy Counterpart of Klein Quadric, International Electronic Journal of Geometry, 2023; 16(2): 680–688.
  • [4] Bayar A, Akça Z, Ekmekçi S. A Note on Fibered Projective Plane Geometry, Information Science, 2008; 178: 1257-1262.
  • [5] Ekmekçi S, Bayar A, Akça Z. On the classification of Fuzzy projective planes of Fuzzy 3-dimensional projective spaces, Chaos, Solitons and Fractals, 2009; 40: 2146-2151.
  • [6] Hirschfeld JWP. Projective Geometries over Finite Fields, Oxford Mathematical Monographs, 1998.
  • [7] Klein F. Uber die Transformation der allgemeinen Gleichung des zweiten Grades zwischen Linien-Koordinaten auf eine kanonische, Form Math., 1868; 539-578.
  • [8] Kuijken L, Van Maldeghem H, Kerre E.E, Fuzzy projective geometries from fuzzy vector spaces, in: A. Billot et al. (Eds.), Information Processing and Management of Uncertainty in Knowledge-based Systems, Editions Medicales et Scientifiques, Paris, La Sorbonne, 1998; 1331-1338.
  • [9] Lubczonok P. Fuzzy Vector Spaces, Fuzzy Sets and Systems, 1990; 38: 329-343.
  • [10] Plucker J. On a New Geometry of Space, Philosophical Transactions of the Royal Society of London, 1865; 155: 725-791.
  • [11] Zadeh L. Fuzzy sets, Information control, 1965; 8: 338-353.
There are 11 citations in total.

Details

Primary Language English
Subjects Symbolic Calculation
Journal Section Articles
Authors

Münevvere Mine Karakaya 0000-0003-1517-3409

Ziya Akça 0000-0001-6379-0546

Publication Date June 28, 2024
Submission Date May 9, 2024
Acceptance Date June 15, 2024
Published in Issue Year 2024 Volume: 25 Issue: 2

Cite

AMA Karakaya MM, Akça Z. ON THE FUZZIFICATION OF GREEK PLANES OF KLEIN QUADRIC. Estuscience - Se. June 2024;25(2):300-307. doi:10.18038/estubtda.1481317