Year 2025,
Volume: 26 Issue: 3, 217 - 230, 25.09.2025
Hasan Hüseyin Güleç
,
İbrahim Aktaş
References
-
[1] Duren PL. Univalent Functions. In: Grundlehren der Mathematischen Wissenschaften. New York, NY, USA: Springer-Verlag, 1983.
-
[2] Bazilevič IE. On a class of integrability by quadratures of the equation of Loewner-Kufarev. Mat Sb 1955; 37(79): 471–476.
-
[3] Singh R. On Bazilevič functions. Proc Amer Math Soc 1973; 38: 261–271.
-
[4] Babalola KO. On λ-pseudo-starlike functions. J Class Anal 2013; 3: 137–147.
-
[5] Çağlar M, İbrahim İO, Shaba TG, Wanas AK. Toeplitz determinants for λ-Pseudo-Starlike functions. Communications of the Korean Mathematical Society 2024; 39(3): 646–655.
-
[6] Sakaguchi K. On certain univalent mapping. J Math Soc Jpn 1959; 11: 72–75.
-
[7] Lewin M. On a coefficient problem for bi-univalent functions. Proc Amer Math Soc 1967; 18: 63–68.
-
[8] Brannan D, Clunie J. Aspects of contemporary complex analysis. In: Proceedings of the NATO Advanced Study Institute. New York and London: Academic Press, 1980.
-
[9] Srivastava HM, Mishra AK, Gochhayat P. Certain subclasses of analytic and bi-univalent functions. Appl Math Lett 2010; 23: 1188–1192.
-
[10] Fekete M, Szegö G. Eine bemerkung über ungerade schlichte funktionen. J Lond Math Soc 1933; 1(2): 85–89.
-
[11] Zaprawa P. On the Fekete-Szegö problem for classes of bi-univalent functions. Bull Belg Math Soc Simon Stevin 2014; 21(1): 169–178.
-
[12] Akgül A. Fekete-Szegö variations for some new classes of analytic functions explained over Poisson and Borel distribution series. Math Methods Appl Sci 2025; 48(8): 9241–9252.
-
[13] Brannan DA, Taha TS. On some classes of bi-univalent functions. In: Proceedings of the International Conference on Mathematical Analysis and its Applications; 1988; Pergamon: 53–60.
-
[14] Aktaş İ, Hamarat D. Generalized bivariate Fibonacci polynomial and two new subclasses of bi-univalent functions. Asian-Eur J Math 2023; 16(08): 2350147.
-
[15] Öztürk R, Aktaş İ. Coefficient estimate and Fekete-Szegö problems for certain new subclasses of bi-univalent functions defined by generalized bivariate Fibonacci polynomial. Sahand Communications in Mathematical Analysis 2024; 21(3): 35–53.
-
[16] Aktaş İ, Yılmaz N. Initial coefficients estimate and Fekete-Szegő problems for two new subclasses of bi-univalent functions. Konuralp J Math 2022; 10(1): 138–148.
-
[17] Swamy SR, Frasin BA, Breaz D, Cotîrlă L-I. Two families of bi-univalent functions associating the (p,q)-derivative with generalized bivariate Fibonacci polynomials. Mathematics 2024; 12: 3933, https://doi.org/10.3390/math12243933.
-
[18] Orhan H, Aktaş İ, Arı̇kan H. On a new subclass of bi-univalent functions associated with the (p,q)-Lucas polynomials and bi-Bazilevic type functions of order ρ+iξ. Turk J Math 2023; 47(1): 98-109.
-
[19] Alamoush AG. Coefficient estimates for certain subclass of bi-Bazilević functions associated with Chebyshev polynomials. Acta Univ Apulensis 2019; 60: 53–59.
-
[20] Amourah A, Al-Hawary T, Frasin BA. Application of Chebyshev polynomials to certain class of bi-Bazilevic functions of order. Afr Mat 2021; 32: 1059–1066.
-
[21] Altınkaya Ş, Yalçın S. On the Chebyshev polynomial coefficient problem of some subclasses of bi-univalent functions. Gulf J Math 2017; 5(3): 34–40.
-
[22] Altınkaya Ş, Yalçın S. On the Chebyshev polynomial coefficient problem of bi-Bazilevič function. TWMS J Apl & Eng Math 2020; 10(1): 251–258.
-
[23] Bulut S, Magesh N, Balaji VK. Initial bounds for analytic and bi-univalent functions by means of Chebyshev polynomials. J Class Anal 2017; 11(1): 83–89.
-
[24] Altınkaya Ş, Yalçın S. Chebyshev polynomial coefficient bounds for a subclass of bi-univalent functions. 2017; arXiv:1605.08224v2.
-
[25] Bulut S, Magesh N, Abirami C. A comprehensive class of analytic bi-univalent functions by means of Chebyshev polynomıals. J Fract Calc Appl 2017; 8(2): 32–39.
-
[26] Magesh N, Bulut S. Chebyshev polynomial coefficient estimates for a class of analytic bi-univalent functions related to pseudo-starlike functions. Afr Mat 2018; 29: 203–209.
-
[27] Güney HÖ, Murugusundaramoorthy G, Vijaya K. Coefficient bounds for subclasses of bi-univalent functions associated with the Chebyshev polynomials. J Complex Anal 2017; Article ID 4150210, 7 pages, https://doi.org/10.1155/2017/4150210.
-
[28] Murugusundaramoorthy G, Vijaya K, Güney HÖ. Certain subclasses of bi-univalent functions associated with the Chebyshev polynomials based on Hohlov operator. Tbilisi Math J 2018; 11(2): 153–166.
-
[29] Patil AB, Shaba TG. On sharp Chebyshev polynomial bounds for a general subclass of bi-univalent functions. Balkan Society of Geometers Applied Sciences 2021; 23: 109–117.
-
[30] Alamoush AG. On a subclass of bi-univalent functions associated to Horadam polynomials. Internat J Open Problems in Complex Analy 2020; 12(1): 58–65.
-
[31] Srivastava HM, Altınkaya Ş, Yalçın S. Certain subclasses of bi-univalent functions associated with the Horadam polynomials. Iran J Sci Technol Trans A Sci 2019; 43: 1873–1879.
-
[32] Swamy SR, Sailaja Y. Horadam polynomial coefficient estimates for two families of holomorphic and bi-univalent functions. Internat J Math Trends and Tech 2020; 66(8): 131–138.
-
[33] Wanas AK, Alina AL. Applications of Horadam polynomials on Bazilevič bi-univalent function satisfying subordinate conditions. J Phys Conference Series; IOP Publishing. 2019; 1294(3).
-
[34] Abirami C, Magesh N, Yamini J. Initial bounds for certain classes of bi-univalent functions defined by Horadam polynomials. Abstr Appl Anal 2020; Article ID 7391058, https://doi.org/10.1155/2020/7391058.
-
[35] Al-Shbeil I, Wanas AK, AlAqad H, Cătaş A, Alohali H. Applications of Horadam polynomials for Bazilevič and λ-Pseudo-Starlike bi-univalent functions associated with Sakaguchi type functions. Symmetry 2024; 16(2): 218, https://doi.org/10.3390/sym16020218.
-
[36] Çağlar M, Cotirla L-I, Buyankara M. Fekete-Szego inequalities for a new subclass of bi-univalent functions associated with Gegenbauer polynomials. Symmetry 2022; 14(8): 1–8.
-
[37] Buyankara M, Çağlar M. Coefficient inequalities for two new subclasses of bi-univalent functions involving Lucas-Balancing polynomials. Eastern Anatolian Journal of Science 2024; 10(2): 5–11.
-
[38] Akgül A, Oros GI. Gregory polynomials within Sakaguchi type function classes: Analytical estimates and geometric behavior. Symmetry 2025; 17(8): 1-22.
-
[39] Srivastava HM, Murugusundaramoorthy G, Vijaya K. Coefficient estimates for some families of bi-Bazilevič functions of the Ma-Minda type involving the Hohlov operator. J Class Anal 2013; 2(2): 167–181.
-
[40] Aldweby H, Darus M. On a subclass of bi-univalent functions associated with the q-derivative operator. J Math Computer Sci 2019; 19: 58–64.
-
[41] Amini E, Al-Omari S, Nonlaopon K, Balenau D. Estimates for coefficients of bi-univalent functions associated with a fractional q-difference operator. Symmetry 2022; 14: 879, https://doi.org/10.3390/sym14050879.
-
[42] Jassim KA, Rasheed RO, Jassim RH. Generalized subclass of analytic bi-univalent functions defined by differential operator. J Interdiscip Math 2021; 24(4): 961–970.
-
[43] Miller SS, Mocanu PT. Differential Subordinations. Theory and Applications. CRC Press, 2000.
-
[44] Panwar YK, Singh M. Generalized bivariate Fibonacci-like polynomials. Internat J Pure Math 2014; 1: 8–13.
-
[45] Pommerenke C. Univalent functions. Göttigen, Germany: Vandenhoeck & Ruprecht, 1975.
SUBCLASS OF BAZILEVIC̆ AND λ-PSEUDO-STARLIKE BI-UNIVALENT FUNCTIONS ASSOCIATED WITH SAKAGUCHI TYPE FUNCTIONS AND ITS APPLICATION TO FIBONACCI-LIKE POLYNOMIAL
Year 2025,
Volume: 26 Issue: 3, 217 - 230, 25.09.2025
Hasan Hüseyin Güleç
,
İbrahim Aktaş
Abstract
In this paper, we first introduce a new subclass of analytic and bi-univalent functions related to Sakaguchi type functions, λ-pseudo-starlike and, Bazilevič functions. We also use the generalized bivariate Fibonacci-like polynomial as a subordination function. In addition, we provide function examples to show that this class of functions is a non-empty set. We then establish bounds on certain coefficients of the Maclaurin series expansion of the functions belonging to this newly constructed subclass of bi-univalent functions. We also establish bounds on the Fekete-Szegö functional of the functions in the defined subclass. We note that the comprehensive function class in this work generalizes some previously studied function classes, and the results of this study re-establish certain results in the previously published papers
References
-
[1] Duren PL. Univalent Functions. In: Grundlehren der Mathematischen Wissenschaften. New York, NY, USA: Springer-Verlag, 1983.
-
[2] Bazilevič IE. On a class of integrability by quadratures of the equation of Loewner-Kufarev. Mat Sb 1955; 37(79): 471–476.
-
[3] Singh R. On Bazilevič functions. Proc Amer Math Soc 1973; 38: 261–271.
-
[4] Babalola KO. On λ-pseudo-starlike functions. J Class Anal 2013; 3: 137–147.
-
[5] Çağlar M, İbrahim İO, Shaba TG, Wanas AK. Toeplitz determinants for λ-Pseudo-Starlike functions. Communications of the Korean Mathematical Society 2024; 39(3): 646–655.
-
[6] Sakaguchi K. On certain univalent mapping. J Math Soc Jpn 1959; 11: 72–75.
-
[7] Lewin M. On a coefficient problem for bi-univalent functions. Proc Amer Math Soc 1967; 18: 63–68.
-
[8] Brannan D, Clunie J. Aspects of contemporary complex analysis. In: Proceedings of the NATO Advanced Study Institute. New York and London: Academic Press, 1980.
-
[9] Srivastava HM, Mishra AK, Gochhayat P. Certain subclasses of analytic and bi-univalent functions. Appl Math Lett 2010; 23: 1188–1192.
-
[10] Fekete M, Szegö G. Eine bemerkung über ungerade schlichte funktionen. J Lond Math Soc 1933; 1(2): 85–89.
-
[11] Zaprawa P. On the Fekete-Szegö problem for classes of bi-univalent functions. Bull Belg Math Soc Simon Stevin 2014; 21(1): 169–178.
-
[12] Akgül A. Fekete-Szegö variations for some new classes of analytic functions explained over Poisson and Borel distribution series. Math Methods Appl Sci 2025; 48(8): 9241–9252.
-
[13] Brannan DA, Taha TS. On some classes of bi-univalent functions. In: Proceedings of the International Conference on Mathematical Analysis and its Applications; 1988; Pergamon: 53–60.
-
[14] Aktaş İ, Hamarat D. Generalized bivariate Fibonacci polynomial and two new subclasses of bi-univalent functions. Asian-Eur J Math 2023; 16(08): 2350147.
-
[15] Öztürk R, Aktaş İ. Coefficient estimate and Fekete-Szegö problems for certain new subclasses of bi-univalent functions defined by generalized bivariate Fibonacci polynomial. Sahand Communications in Mathematical Analysis 2024; 21(3): 35–53.
-
[16] Aktaş İ, Yılmaz N. Initial coefficients estimate and Fekete-Szegő problems for two new subclasses of bi-univalent functions. Konuralp J Math 2022; 10(1): 138–148.
-
[17] Swamy SR, Frasin BA, Breaz D, Cotîrlă L-I. Two families of bi-univalent functions associating the (p,q)-derivative with generalized bivariate Fibonacci polynomials. Mathematics 2024; 12: 3933, https://doi.org/10.3390/math12243933.
-
[18] Orhan H, Aktaş İ, Arı̇kan H. On a new subclass of bi-univalent functions associated with the (p,q)-Lucas polynomials and bi-Bazilevic type functions of order ρ+iξ. Turk J Math 2023; 47(1): 98-109.
-
[19] Alamoush AG. Coefficient estimates for certain subclass of bi-Bazilević functions associated with Chebyshev polynomials. Acta Univ Apulensis 2019; 60: 53–59.
-
[20] Amourah A, Al-Hawary T, Frasin BA. Application of Chebyshev polynomials to certain class of bi-Bazilevic functions of order. Afr Mat 2021; 32: 1059–1066.
-
[21] Altınkaya Ş, Yalçın S. On the Chebyshev polynomial coefficient problem of some subclasses of bi-univalent functions. Gulf J Math 2017; 5(3): 34–40.
-
[22] Altınkaya Ş, Yalçın S. On the Chebyshev polynomial coefficient problem of bi-Bazilevič function. TWMS J Apl & Eng Math 2020; 10(1): 251–258.
-
[23] Bulut S, Magesh N, Balaji VK. Initial bounds for analytic and bi-univalent functions by means of Chebyshev polynomials. J Class Anal 2017; 11(1): 83–89.
-
[24] Altınkaya Ş, Yalçın S. Chebyshev polynomial coefficient bounds for a subclass of bi-univalent functions. 2017; arXiv:1605.08224v2.
-
[25] Bulut S, Magesh N, Abirami C. A comprehensive class of analytic bi-univalent functions by means of Chebyshev polynomıals. J Fract Calc Appl 2017; 8(2): 32–39.
-
[26] Magesh N, Bulut S. Chebyshev polynomial coefficient estimates for a class of analytic bi-univalent functions related to pseudo-starlike functions. Afr Mat 2018; 29: 203–209.
-
[27] Güney HÖ, Murugusundaramoorthy G, Vijaya K. Coefficient bounds for subclasses of bi-univalent functions associated with the Chebyshev polynomials. J Complex Anal 2017; Article ID 4150210, 7 pages, https://doi.org/10.1155/2017/4150210.
-
[28] Murugusundaramoorthy G, Vijaya K, Güney HÖ. Certain subclasses of bi-univalent functions associated with the Chebyshev polynomials based on Hohlov operator. Tbilisi Math J 2018; 11(2): 153–166.
-
[29] Patil AB, Shaba TG. On sharp Chebyshev polynomial bounds for a general subclass of bi-univalent functions. Balkan Society of Geometers Applied Sciences 2021; 23: 109–117.
-
[30] Alamoush AG. On a subclass of bi-univalent functions associated to Horadam polynomials. Internat J Open Problems in Complex Analy 2020; 12(1): 58–65.
-
[31] Srivastava HM, Altınkaya Ş, Yalçın S. Certain subclasses of bi-univalent functions associated with the Horadam polynomials. Iran J Sci Technol Trans A Sci 2019; 43: 1873–1879.
-
[32] Swamy SR, Sailaja Y. Horadam polynomial coefficient estimates for two families of holomorphic and bi-univalent functions. Internat J Math Trends and Tech 2020; 66(8): 131–138.
-
[33] Wanas AK, Alina AL. Applications of Horadam polynomials on Bazilevič bi-univalent function satisfying subordinate conditions. J Phys Conference Series; IOP Publishing. 2019; 1294(3).
-
[34] Abirami C, Magesh N, Yamini J. Initial bounds for certain classes of bi-univalent functions defined by Horadam polynomials. Abstr Appl Anal 2020; Article ID 7391058, https://doi.org/10.1155/2020/7391058.
-
[35] Al-Shbeil I, Wanas AK, AlAqad H, Cătaş A, Alohali H. Applications of Horadam polynomials for Bazilevič and λ-Pseudo-Starlike bi-univalent functions associated with Sakaguchi type functions. Symmetry 2024; 16(2): 218, https://doi.org/10.3390/sym16020218.
-
[36] Çağlar M, Cotirla L-I, Buyankara M. Fekete-Szego inequalities for a new subclass of bi-univalent functions associated with Gegenbauer polynomials. Symmetry 2022; 14(8): 1–8.
-
[37] Buyankara M, Çağlar M. Coefficient inequalities for two new subclasses of bi-univalent functions involving Lucas-Balancing polynomials. Eastern Anatolian Journal of Science 2024; 10(2): 5–11.
-
[38] Akgül A, Oros GI. Gregory polynomials within Sakaguchi type function classes: Analytical estimates and geometric behavior. Symmetry 2025; 17(8): 1-22.
-
[39] Srivastava HM, Murugusundaramoorthy G, Vijaya K. Coefficient estimates for some families of bi-Bazilevič functions of the Ma-Minda type involving the Hohlov operator. J Class Anal 2013; 2(2): 167–181.
-
[40] Aldweby H, Darus M. On a subclass of bi-univalent functions associated with the q-derivative operator. J Math Computer Sci 2019; 19: 58–64.
-
[41] Amini E, Al-Omari S, Nonlaopon K, Balenau D. Estimates for coefficients of bi-univalent functions associated with a fractional q-difference operator. Symmetry 2022; 14: 879, https://doi.org/10.3390/sym14050879.
-
[42] Jassim KA, Rasheed RO, Jassim RH. Generalized subclass of analytic bi-univalent functions defined by differential operator. J Interdiscip Math 2021; 24(4): 961–970.
-
[43] Miller SS, Mocanu PT. Differential Subordinations. Theory and Applications. CRC Press, 2000.
-
[44] Panwar YK, Singh M. Generalized bivariate Fibonacci-like polynomials. Internat J Pure Math 2014; 1: 8–13.
-
[45] Pommerenke C. Univalent functions. Göttigen, Germany: Vandenhoeck & Ruprecht, 1975.