Araştırma Makalesi
BibTex RIS Kaynak Göster

Lübnan'da Seralar İçin Isısal Gereksinimlerin Hesaplamalı Analiz Yoluyla Değerlendirilmesi

Yıl 2025, Cilt: 8 Sayı: 2, 178 - 188, 30.12.2025
https://doi.org/10.55257/ethabd.1703713

Öz

Lübnan'da plastik örtülü seralardaki enerji tüketim oranlarıyla ilgili araştırmalar giderek daha da önemli hale geliyor, çünkü bu yapılar özellikle şiddetli hava dalgalanmalarına maruz kalan bölgelerde tarım sektörünün temel bir ayağını oluşturuyor. Mevcut zorluklar ve enerji kaynaklarının kıtlığı arasında, enerjinin nasıl tüketildiğini anlamak üretim seviyelerini artırmak ve giderleri azaltmak için elzemdir. Korunan evlerin verimli yönetimi, farklı mevsimlere uygun üretken yönetim yöntemlerini uygulamak için mahsulleri etkileyen iklimsel ve çevresel faktörlere aşinalık gerektirir. Maliyetlerin önemli bir bölümünü oluşturan ısıtma sistemlerinin, üretim kalitesi ve niceliği üzerinde olumsuz etkilerden kaçınmak için hassas bir düzenlemeye ihtiyacı vardır. Isıtma sistemlerinin hassas kontrolü ile verimliliğin artırılmasıyla ithalata olan bağımlılığın azaltılması mümkün olmakta, bu da yerel üretimi artırmaya ve ulusal ekonomiyi desteklemeye yardımcı olmaktadır. Bu bağlamda, çalışma, konum, ürün türü, kaplama malzemeleri ve kullanılan ısıtma sistemi gibi birden fazla veri noktasına dayalı olarak plastik seraların ısıtma ihtiyaçlarını değerlendiren bir bilgisayar programının geliştirilmesini içermektedir. Sonuçlar, Lübnan'ın seralar için 2.54 MW enerjiye ihtiyaç duyduğunu, Baalbek-Hermel ovasının 1.6 MW ile en yüksek tüketim oranlarını kaydettiğini göstermektedir. Akkar, El-janob, El-Şalmal ve El-Cebel gibi bölgelere baktığımızda, tüketimin sırasıyla 0.465, 0.134, 0.154 ve 1.89 MW olduğunu görüyoruz. Optimal ısıtma kontrolü, domates, salatalık, kabak ve yeşil fasulye için sırasıyla 0.96, 1.02, 0.361 ve 0.193 MW enerji tüketimine yol açarak gıda güvenliğine katkıda bulunmuş ve ithalat ihtiyacını azaltmıştır. Bu çalışma, sürdürülebilir ve verimli tarım elde etmek, Lübnan ekonomisinin ve çevrenin korunmasının gelişmesine katkıda bulunmak, iş fırsatları sağlamak ve çiftçilerin yaşam standartlarını iyileştirmek için bilimsel araştırmalara yatırım yapmanın ve teknolojiyi uygulamanın önemini vurgulamaktadır.

Kaynakça

  • Abdelaty, E., 2015. GIS-mapping aridity and rainfall water deficit of Egypt. J. Agric. & Env. Sci. Dam. Univ., Egypt 14: 17-40.
  • Al Miaari, A., El Khatib, A., Ali, H.M., 2023. Design and thermal performance of an innovative greenhouse. Sustainable Energy Technologies and Assessments 57: 103285.
  • Ali, H.B., Bournet, P.-E., Cannavo, P., Chantoiseau, E., 2019. Using CFD to improve the irrigation strategy for growing ornamental plants inside a greenhouse. Biosystems engineering 186: 130-145.
  • Anonymous, 2010. Ministry of Agriculture and Land Reclamation (In Arabic 2010).
  • Attar, I., Farhat, A., 2015. Efficiency evaluation of a solar water heating system applied to the greenhouse climate. Solar Energy 119: 212-224.
  • Attar, I., Naili, N., Khalifa, N., Hazami, M., Farhat, A., 2013. Parametric and numerical study of a solar system for heating a greenhouse equipped with a buried exchanger. Energy Conversion and Management 70: 163-173.
  • Beyhan, B., Paksoy, H., Daşgan, Y., 2013. Root zone temperature control with thermal energy storage in phase change materials for soilless greenhouse applications. Energy Conversion and Management 74: 446-453.
  • Brouche, M., Lahoud, C., Lahoud, M.F., Lahoud, C., 2020. Solar drying simulation of different products: Lebanese case. Energy Reports 6: 548-564.
  • Castilla, N., Hernandez, J., 2006. Greenhouse technological packages for high-quality crop production, XXVII International Horticultural Congress-IHC2006: International Symposium on Advances in Environmental Control, Automation 761, pp. 285-297.
  • Chai, L., Ma, C., Ni, J.-Q., 2012. Performance evaluation of ground source heat pump system for greenhouse heating in northern China. Biosystems engineering 111: 107-117.
  • Chedid, R., Chaaban, F., Salameh, S., 2001. Policy analysis of greenhouse gas emissions: the case of the Lebanese electricity sector. Energy Conversion and Management 42: 373-392.
  • Chou, S., Chua, K., Ho, J., Ooi, C., 2004. On the study of an energy-efficient greenhouse for heating, cooling and dehumidification applications. Applied energy 77: 355-373.
  • Darwish, M., El-Awar, F., Sharara, M., Hamdar, B., 1999. Economic-environmental approach for optimum wastewater utilization in irrigation: A case study in Lebanon. Applied Engineering in Agriculture 15: 41-48.
  • Dimitropoulou, A.-M.N., Maroulis, V.Z., Giannini, E.N., 2023. A Simple and Effective Model for Predicting the Thermal Energy Requirements of Greenhouses in Europe. Energies 16: 6788.
  • El-Fadel, M., Bou-Zeid, E., 1999. Transportation GHG emissions in developing countries.: The case of Lebanon. Transportation Research Part D: Transport and Environment 4: 251-264.
  • Ghaly, N., Gürdil, G.A., Duran, H., Demirel, B., 2024. Calculating Greenhouse Heating Capacities under Egypt's Climate Conditions: Using a Computational Program. Tarım Makinaları Bilimi Dergisi 20: 25-40.
  • Habib, W., Saab, C., Malek, R., Kattoura, L., Rotolo, C., Gerges, E., Baroudy, F., Pollastro, S., Faretra, F., De Miccolis Angelini, R.M., 2020. Resistance profiles of Botrytis cinerea populations to several fungicide classes on greenhouse tomato and strawberry in Lebanon. Plant Pathology 69: 1453-1468.
  • Hainoun, A., Omar, H., Almoustafa, A., Seif Al-din, M.K., 2010. Developing an optimal energy supply strategy for Syria in view of GHG reduction with least-cost climate protection.
  • Hossard, L., Philibert, A., Bertrand, M., Colnenne-David, C., Debaeke, P., Munier-Jolain, N., Jeuffroy, M.-H., Richard, G., Makowski, D., 2014. Effects of halving pesticide use on wheat production. Scientific reports 4: 1-7.
  • Khatib, A., Sizov, A.P., 2022. Mapping the spatial distribution and potential expansion of agricultural plastic greenhouses in Tartus, Syria using GIS and remote sensing techniques. Geocarto International: 1-24.
  • Kläring, H.-P., Klopotek, Y., Krumbein, A., Schwarz, D., 2015. The effect of reducing the heating set point on the photosynthesis, growth, yield and fruit quality in greenhouse tomato production. Agricultural and Forest Meteorology 214: 178-188.
  • Morshed, W., Abbas, L., Nazha, H., 2022. Heating performance of the PVC earthair tubular heat exchanger applied to a greenhouse in the coastal area of west Syria: An experimental study. Thermal Science and Engineering Progress 27: 101000.
  • Perry, K.B., Wehner, T.C., Johnson, G.L., 1986. Comparison of 14 methods to determine heat unit requirements for cucumber harvest. HortScience 21: 419-423.
  • Ponce, P., Molina, A., Cepeda, P., Lugo, E., MacCleery, B., 2014. Greenhouse design and control. CRC press Boca Raton, FL, USA:.
  • Rabbi, B., Chen, Z.-H., Sethuvenkatraman, S., 2019. Protected cropping in warm climates: A review of humidity control and cooling methods. Energies 12: 2737.
  • Rana, M., Vilas, C.A., 2017. Broad Bean, Vegetable Crop Science. CRC Press, pp. 683-692.
  • Rouphael, Y., Colla, G., Battistelli, A., Moscatello, S., Proietti, S., Rea, E., 2004. Yield, water requirement, nutrient uptake and fruit quality of zucchini squash grown in soil and closed soilless culture. The Journal of Horticultural Science and Biotechnology 79: 423-430.
  • Sarraf, S., 2004. Irrigation management and maintenance in greenhouse crops in Lebanon. Integrated production and protection in greenhouse vegetable crops. Technical Booklet. FAO, Rome, Italy, 83-93.
  • Tazawa, S., 1999. Effects of various radiant sources on plant growth (Part 1). Japan Agricultural Research Quarterly 33: 163-176.
  • Van der Salm, C., Katzin, D., van Os, E., Raaphorst, M., 2023. Design of a greenhouse for peri-urban horticulture in Algeria. Wageningen University & Research, BU Greenhouse Horticulture.
  • Van Os, E., Baeza Romero, J., van der Salm, C., Jomaa, I., Tsafaras, I., El Skaf, S., El Halabi, D., El Rifai, L., 2019. Application of the adaptive greenhouse concept in Lebanon, XI International Symposium on Protected Cultivation in Mild Winter Climates and I International Symposium on Nettings and 1268, pp. 35-42.
  • Yavuzcan, G., 1995. İçsel tarım mekanizasyonu. Ankara Üniversitesi Ziraat Fakültesi Yayınları. Yayın no: 1416, Ankara.

Assessing Thermal Requirements for Lebanese Greenhouses via Computational Analysis

Yıl 2025, Cilt: 8 Sayı: 2, 178 - 188, 30.12.2025
https://doi.org/10.55257/ethabd.1703713

Öz

In Lebanon, research related to energy consumption rates in plastic greenhouses is increasingly important, as these structures are a fundamental pillar of the agricultural sector, especially in areas prone to severe weather fluctuations. Amid current challenges and the scarcity of energy sources, understanding how energy is consumed is essential for increasing production levels and reducing expenses. Efficient management of protected houses requires familiarity with the climatic and environmental factors that affect crops, in order to implement productive management methods suitable for different seasons. Heating systems, which represent an important part of the costs, need precise regulation to avoid negative impacts on the quality and quantity of production. Reducing reliance on imports becomes possible by improving productivity through precise control of heating systems, which helps increase local production and supports the national economy. In this context, the study included the development of a computer program that assesses the heating needs of plastic greenhouses based on multiple data points such as location, crop type, covering materials, and the heating system used. The results indicated that Lebanon needs 2.54 megawatts of energy for the greenhouses, with the Baalbek-Hermel plain recording the highest consumption rates at 1.6 megawatts. Looking at regions such as Akkar, Al -janob, Al-shamal, and Al-Jabal, we find that consumption amounts to 0.465, 0.134, 0.154, and 1.89 megawatts, respectively. Optimal heating control led to energy consumption of 0.96, 1.02, 0.361, and 0.193 MW for tomatoes, cucumbers, zucchini, and green beans, respectively, contributing to food security and reducing the need for imports. This study emphasizes the importance of investing in scientific research and applying technology to achieve sustainable and efficient agriculture, contributing to the development of the Lebanese economy and environmental protection, while providing job opportunities and improving the living standards of farmers.

Kaynakça

  • Abdelaty, E., 2015. GIS-mapping aridity and rainfall water deficit of Egypt. J. Agric. & Env. Sci. Dam. Univ., Egypt 14: 17-40.
  • Al Miaari, A., El Khatib, A., Ali, H.M., 2023. Design and thermal performance of an innovative greenhouse. Sustainable Energy Technologies and Assessments 57: 103285.
  • Ali, H.B., Bournet, P.-E., Cannavo, P., Chantoiseau, E., 2019. Using CFD to improve the irrigation strategy for growing ornamental plants inside a greenhouse. Biosystems engineering 186: 130-145.
  • Anonymous, 2010. Ministry of Agriculture and Land Reclamation (In Arabic 2010).
  • Attar, I., Farhat, A., 2015. Efficiency evaluation of a solar water heating system applied to the greenhouse climate. Solar Energy 119: 212-224.
  • Attar, I., Naili, N., Khalifa, N., Hazami, M., Farhat, A., 2013. Parametric and numerical study of a solar system for heating a greenhouse equipped with a buried exchanger. Energy Conversion and Management 70: 163-173.
  • Beyhan, B., Paksoy, H., Daşgan, Y., 2013. Root zone temperature control with thermal energy storage in phase change materials for soilless greenhouse applications. Energy Conversion and Management 74: 446-453.
  • Brouche, M., Lahoud, C., Lahoud, M.F., Lahoud, C., 2020. Solar drying simulation of different products: Lebanese case. Energy Reports 6: 548-564.
  • Castilla, N., Hernandez, J., 2006. Greenhouse technological packages for high-quality crop production, XXVII International Horticultural Congress-IHC2006: International Symposium on Advances in Environmental Control, Automation 761, pp. 285-297.
  • Chai, L., Ma, C., Ni, J.-Q., 2012. Performance evaluation of ground source heat pump system for greenhouse heating in northern China. Biosystems engineering 111: 107-117.
  • Chedid, R., Chaaban, F., Salameh, S., 2001. Policy analysis of greenhouse gas emissions: the case of the Lebanese electricity sector. Energy Conversion and Management 42: 373-392.
  • Chou, S., Chua, K., Ho, J., Ooi, C., 2004. On the study of an energy-efficient greenhouse for heating, cooling and dehumidification applications. Applied energy 77: 355-373.
  • Darwish, M., El-Awar, F., Sharara, M., Hamdar, B., 1999. Economic-environmental approach for optimum wastewater utilization in irrigation: A case study in Lebanon. Applied Engineering in Agriculture 15: 41-48.
  • Dimitropoulou, A.-M.N., Maroulis, V.Z., Giannini, E.N., 2023. A Simple and Effective Model for Predicting the Thermal Energy Requirements of Greenhouses in Europe. Energies 16: 6788.
  • El-Fadel, M., Bou-Zeid, E., 1999. Transportation GHG emissions in developing countries.: The case of Lebanon. Transportation Research Part D: Transport and Environment 4: 251-264.
  • Ghaly, N., Gürdil, G.A., Duran, H., Demirel, B., 2024. Calculating Greenhouse Heating Capacities under Egypt's Climate Conditions: Using a Computational Program. Tarım Makinaları Bilimi Dergisi 20: 25-40.
  • Habib, W., Saab, C., Malek, R., Kattoura, L., Rotolo, C., Gerges, E., Baroudy, F., Pollastro, S., Faretra, F., De Miccolis Angelini, R.M., 2020. Resistance profiles of Botrytis cinerea populations to several fungicide classes on greenhouse tomato and strawberry in Lebanon. Plant Pathology 69: 1453-1468.
  • Hainoun, A., Omar, H., Almoustafa, A., Seif Al-din, M.K., 2010. Developing an optimal energy supply strategy for Syria in view of GHG reduction with least-cost climate protection.
  • Hossard, L., Philibert, A., Bertrand, M., Colnenne-David, C., Debaeke, P., Munier-Jolain, N., Jeuffroy, M.-H., Richard, G., Makowski, D., 2014. Effects of halving pesticide use on wheat production. Scientific reports 4: 1-7.
  • Khatib, A., Sizov, A.P., 2022. Mapping the spatial distribution and potential expansion of agricultural plastic greenhouses in Tartus, Syria using GIS and remote sensing techniques. Geocarto International: 1-24.
  • Kläring, H.-P., Klopotek, Y., Krumbein, A., Schwarz, D., 2015. The effect of reducing the heating set point on the photosynthesis, growth, yield and fruit quality in greenhouse tomato production. Agricultural and Forest Meteorology 214: 178-188.
  • Morshed, W., Abbas, L., Nazha, H., 2022. Heating performance of the PVC earthair tubular heat exchanger applied to a greenhouse in the coastal area of west Syria: An experimental study. Thermal Science and Engineering Progress 27: 101000.
  • Perry, K.B., Wehner, T.C., Johnson, G.L., 1986. Comparison of 14 methods to determine heat unit requirements for cucumber harvest. HortScience 21: 419-423.
  • Ponce, P., Molina, A., Cepeda, P., Lugo, E., MacCleery, B., 2014. Greenhouse design and control. CRC press Boca Raton, FL, USA:.
  • Rabbi, B., Chen, Z.-H., Sethuvenkatraman, S., 2019. Protected cropping in warm climates: A review of humidity control and cooling methods. Energies 12: 2737.
  • Rana, M., Vilas, C.A., 2017. Broad Bean, Vegetable Crop Science. CRC Press, pp. 683-692.
  • Rouphael, Y., Colla, G., Battistelli, A., Moscatello, S., Proietti, S., Rea, E., 2004. Yield, water requirement, nutrient uptake and fruit quality of zucchini squash grown in soil and closed soilless culture. The Journal of Horticultural Science and Biotechnology 79: 423-430.
  • Sarraf, S., 2004. Irrigation management and maintenance in greenhouse crops in Lebanon. Integrated production and protection in greenhouse vegetable crops. Technical Booklet. FAO, Rome, Italy, 83-93.
  • Tazawa, S., 1999. Effects of various radiant sources on plant growth (Part 1). Japan Agricultural Research Quarterly 33: 163-176.
  • Van der Salm, C., Katzin, D., van Os, E., Raaphorst, M., 2023. Design of a greenhouse for peri-urban horticulture in Algeria. Wageningen University & Research, BU Greenhouse Horticulture.
  • Van Os, E., Baeza Romero, J., van der Salm, C., Jomaa, I., Tsafaras, I., El Skaf, S., El Halabi, D., El Rifai, L., 2019. Application of the adaptive greenhouse concept in Lebanon, XI International Symposium on Protected Cultivation in Mild Winter Climates and I International Symposium on Nettings and 1268, pp. 35-42.
  • Yavuzcan, G., 1995. İçsel tarım mekanizasyonu. Ankara Üniversitesi Ziraat Fakültesi Yayınları. Yayın no: 1416, Ankara.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Hassas Tarım Teknolojileri
Bölüm Araştırma Makalesi
Yazarlar

Gürkan A. K. Gürdil 0000-0001-7764-3977

Bahadır Demirel 0000-0002-2650-1167

Mohamedeltayib Omer Salih Eissa 0000-0003-0186-1112

Gönderilme Tarihi 21 Mayıs 2025
Kabul Tarihi 17 Aralık 2025
Yayımlanma Tarihi 30 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 2

Kaynak Göster

APA Gürdil, G. A. K., Demirel, B., & Omer Salih Eissa, M. (2025). Assessing Thermal Requirements for Lebanese Greenhouses via Computational Analysis. Erciyes Tarım ve Hayvan Bilimleri Dergisi, 8(2), 178-188. https://doi.org/10.55257/ethabd.1703713