Research Article
BibTex RIS Cite

On the Exponential Diophantine Equation $(6m^{2}+1)^{x}+(3m^{2}-1)^{y}=(3m)^{z}$

Year 2022, , 174 - 180, 23.09.2022
https://doi.org/10.33401/fujma.1038699

Abstract

Let $m$ be a positive integer. In this paper, we consider the exponential Diophantine equation $(6m^{2}+1)^{x}+(3m^{2}-1)^{y}=(3m)^{z}$ and we show that it has only unique positive integer solution $(x,y,z)=(1,1,2)$ for all $ m>1. $ The proof depends on some results on Diophantine equations and the famous primitive divisor theorem.

Project Number

4141

References

  • [1] L. Jesmanowicz, Some remarks on Pythagorean numbers, Wiadom Mat 1, (1955/1956), 196-202.
  • [2] N. Terai, The Diophantine equation $a^x+b^y=c^z$, Proc. Japan Acad. Ser. A Math. Sci., 70 (1994), 22-26.
  • [3] M. Le, R. Scott, R. Styer, A survey on the ternary purely exponential Diophantine equation $a^x + b^y = c^z$, Surv. Math. Appl., 214 (2019), 109-140.
  • [4] M. Alan, On the exponential Diophantine equation $ (m^2+m+1)^x+m^y=(m+1)^z$, Mediterr. J. Math., 17 (189) (2020), 1-8.
  • [5] M. Alan, On the exponential Diophantine equation $ m^x+(m+1)^y=(1+m+m^2)^z$, An. St. Univ. Ovidius Constanta, Ser. Mat., 29 (3) (2021), 23-32.
  • [6] Z. Cao, A note on the Diophantine equation $a^x+ b^y = c^z$, Acta Arith., 91 (1999), 85-93.
  • [7] E. Kızıldere, M. Le, G. Soydan, A note on the ternary purely exponential Diophantine equation $A^x + B^y = C^z$ with $A + B = C^2$, Stud. Sci. Math. Hung., 57 (2) (2020), 200-206.
  • [8] T. Miyazaki, Exceptional cases of Terai's conjecture on Diophantine equations, Arch. Math., 95 (2010), 519-527.
  • [9] T. Miyazaki, N. Terai, A study on the exponential Diophantine equation $ a^x+(a+b)^y=b^z $, Publ. Math. Debrecen, 95 (2019), 19-37.
  • [10] N. Terai, T. Hibino, On the Exponential Diophantine Equation $a^x + lb^y = c^z$, Int. J. Algebra, 10 (2016), 393-403.
  • [11] P. Z. Yuan, Q. Han, Jesmanowicz conjecture and related equations, Acta Arith., 184 (2018), 37-49.
  • [12] N. Terai, On the exponential Diophantine equation $(4m^2+1)^x+(5m^2-1)^y = (3m)^z$, Int. J. Algebra, 6 (2012), 1135-1146.
  • [13] C. Bertok, The complete solution of the Diophantine equation $(4m^2+1)^x+(5m^2-1)^y = (3m)^z$, Period Math. Hung., 72 (2016), 37-42.
  • [14] J. Su, X. Li, The Exponential Diophantine Equation $(4m^2+1)^x+(5m^2-1)^y = (3m)^z$, Abstr. Appl. Anal., (2014), Article ID 670175.
  • [15] J. Wang, T. Wang,W. Zhang, A note on the exponential Diophantine equation $(4m^2+1)^x+(5m^2-1)^y =(3m)^z$, Colloq. Math., 139 (2015), 121-126.
  • [16] N. Terai, On the exponential Diophantine equation $(4m^2+1)^x+(21m^2-1)^y = (5m)^z$, Ann. Math. et Inform., 52 (2020), 243-253.
  • [17] M. Alan, On the exponential Diophantine equation $(18m^{2 +1)^{x +(7m^{2 -1)^{y =(5m)^z$, Turk J. Math., 42 (2018), 1990-1999.
  • [18] N. Deng, D. Wu, P. Yuan, The exponential Diophantine equation $(3am^{2 -1)^{x +(a(a-3)m^{2 +1)^{y =(am)^z$, Turk J. Math., 43 (2019), 2561-2567.
  • [19] R. Fu, H. Yang, On the exponential diophantine equation $\left( am^{2 +1\right) ^{x +\left( bm^{2 -1\right) ^{y =(cm)^{z $ with $c \mid m$ , Period Math. Hung., 75 (2017), 143-149.
  • [20] E. Kızıldere, T. Miyazaki, G. Soydan, On the Diophantine equation $((c+1)m^{2 +1)^{x +(cm^{2 -1)^{y =(am)^z$, Turk J. Math., 42 (2018), 2690-2698.
  • [21] X. Pan, A note on the exponential Diophantine equation $\left( am^{2 +1\right) ^{x +\left( bm^{2 -1\right) ^{y =(cm)^{z $ , Colloq. Math., 149 (2017), 265-273.
  • [22] N. Terai, T. Hibino, On the exponential Diophantine equation $(12m^2 +1)^x +(13m^2 -1)^y = (5m)^z$, Int. J. Algebra, 9 (2015), 261-272.
  • [23] N. Terai, T. Hibino, On the exponential Diophantine equation $(3pm^2-1)^x+(p(p-3)m^2+1)^y=(pm)^z$, Period Math. Hung., 74 (2017), 227-234.
  • [24] K. Terai, S. Yoshiki, On the exponential Diophantine equation, SUT J. Math., 56 (2) (2020), 147-158.
  • [25] T. Nagell, Sur une classe d'{\'e quations exponentielles, Ark Mat., 3 (4) (1958), 569-582.
  • [26] Y. Bugeaud, T. N. Shorey, On the number of solutions of the generalized Ramanujan–Nagell equation, J. Reine Angew. Math., 539 (2001), 55-74.
  • [27] M. Le, Some exponential Diophantine equations I: the equation $D_1x^2 - D_2y^2 = \lambda k^z$, J. Number. Theory, 55 (2) (1995), 209-221.
  • [28] Y. Bilu, G. Hanrot, P. M. Voutier, Existence of primitive divisors of Lucas and Lehmer numbers (with Appendix by Mignotte), J. Reine Angew. Math., 539 (2001), 75-122.
  • [29] P. M. Voutier, Primitive divisors of Lucas and Lehmer sequences, Math. Comp., 64 (1995), 869-888.
  • [30] L. K. Hua, Introduction to Number Theory, Springer, Berlin, Germany, 1982.
  • [31] J. H. E. Cohn, Square Fibonacci numbers, Fibonacci Quart., 2 (1964), 109-113.
Year 2022, , 174 - 180, 23.09.2022
https://doi.org/10.33401/fujma.1038699

Abstract

Supporting Institution

Yıldız Teknik Üniveritesi

Project Number

4141

Thanks

İlginiz için şimdiden teşekkür ederim.

References

  • [1] L. Jesmanowicz, Some remarks on Pythagorean numbers, Wiadom Mat 1, (1955/1956), 196-202.
  • [2] N. Terai, The Diophantine equation $a^x+b^y=c^z$, Proc. Japan Acad. Ser. A Math. Sci., 70 (1994), 22-26.
  • [3] M. Le, R. Scott, R. Styer, A survey on the ternary purely exponential Diophantine equation $a^x + b^y = c^z$, Surv. Math. Appl., 214 (2019), 109-140.
  • [4] M. Alan, On the exponential Diophantine equation $ (m^2+m+1)^x+m^y=(m+1)^z$, Mediterr. J. Math., 17 (189) (2020), 1-8.
  • [5] M. Alan, On the exponential Diophantine equation $ m^x+(m+1)^y=(1+m+m^2)^z$, An. St. Univ. Ovidius Constanta, Ser. Mat., 29 (3) (2021), 23-32.
  • [6] Z. Cao, A note on the Diophantine equation $a^x+ b^y = c^z$, Acta Arith., 91 (1999), 85-93.
  • [7] E. Kızıldere, M. Le, G. Soydan, A note on the ternary purely exponential Diophantine equation $A^x + B^y = C^z$ with $A + B = C^2$, Stud. Sci. Math. Hung., 57 (2) (2020), 200-206.
  • [8] T. Miyazaki, Exceptional cases of Terai's conjecture on Diophantine equations, Arch. Math., 95 (2010), 519-527.
  • [9] T. Miyazaki, N. Terai, A study on the exponential Diophantine equation $ a^x+(a+b)^y=b^z $, Publ. Math. Debrecen, 95 (2019), 19-37.
  • [10] N. Terai, T. Hibino, On the Exponential Diophantine Equation $a^x + lb^y = c^z$, Int. J. Algebra, 10 (2016), 393-403.
  • [11] P. Z. Yuan, Q. Han, Jesmanowicz conjecture and related equations, Acta Arith., 184 (2018), 37-49.
  • [12] N. Terai, On the exponential Diophantine equation $(4m^2+1)^x+(5m^2-1)^y = (3m)^z$, Int. J. Algebra, 6 (2012), 1135-1146.
  • [13] C. Bertok, The complete solution of the Diophantine equation $(4m^2+1)^x+(5m^2-1)^y = (3m)^z$, Period Math. Hung., 72 (2016), 37-42.
  • [14] J. Su, X. Li, The Exponential Diophantine Equation $(4m^2+1)^x+(5m^2-1)^y = (3m)^z$, Abstr. Appl. Anal., (2014), Article ID 670175.
  • [15] J. Wang, T. Wang,W. Zhang, A note on the exponential Diophantine equation $(4m^2+1)^x+(5m^2-1)^y =(3m)^z$, Colloq. Math., 139 (2015), 121-126.
  • [16] N. Terai, On the exponential Diophantine equation $(4m^2+1)^x+(21m^2-1)^y = (5m)^z$, Ann. Math. et Inform., 52 (2020), 243-253.
  • [17] M. Alan, On the exponential Diophantine equation $(18m^{2 +1)^{x +(7m^{2 -1)^{y =(5m)^z$, Turk J. Math., 42 (2018), 1990-1999.
  • [18] N. Deng, D. Wu, P. Yuan, The exponential Diophantine equation $(3am^{2 -1)^{x +(a(a-3)m^{2 +1)^{y =(am)^z$, Turk J. Math., 43 (2019), 2561-2567.
  • [19] R. Fu, H. Yang, On the exponential diophantine equation $\left( am^{2 +1\right) ^{x +\left( bm^{2 -1\right) ^{y =(cm)^{z $ with $c \mid m$ , Period Math. Hung., 75 (2017), 143-149.
  • [20] E. Kızıldere, T. Miyazaki, G. Soydan, On the Diophantine equation $((c+1)m^{2 +1)^{x +(cm^{2 -1)^{y =(am)^z$, Turk J. Math., 42 (2018), 2690-2698.
  • [21] X. Pan, A note on the exponential Diophantine equation $\left( am^{2 +1\right) ^{x +\left( bm^{2 -1\right) ^{y =(cm)^{z $ , Colloq. Math., 149 (2017), 265-273.
  • [22] N. Terai, T. Hibino, On the exponential Diophantine equation $(12m^2 +1)^x +(13m^2 -1)^y = (5m)^z$, Int. J. Algebra, 9 (2015), 261-272.
  • [23] N. Terai, T. Hibino, On the exponential Diophantine equation $(3pm^2-1)^x+(p(p-3)m^2+1)^y=(pm)^z$, Period Math. Hung., 74 (2017), 227-234.
  • [24] K. Terai, S. Yoshiki, On the exponential Diophantine equation, SUT J. Math., 56 (2) (2020), 147-158.
  • [25] T. Nagell, Sur une classe d'{\'e quations exponentielles, Ark Mat., 3 (4) (1958), 569-582.
  • [26] Y. Bugeaud, T. N. Shorey, On the number of solutions of the generalized Ramanujan–Nagell equation, J. Reine Angew. Math., 539 (2001), 55-74.
  • [27] M. Le, Some exponential Diophantine equations I: the equation $D_1x^2 - D_2y^2 = \lambda k^z$, J. Number. Theory, 55 (2) (1995), 209-221.
  • [28] Y. Bilu, G. Hanrot, P. M. Voutier, Existence of primitive divisors of Lucas and Lehmer numbers (with Appendix by Mignotte), J. Reine Angew. Math., 539 (2001), 75-122.
  • [29] P. M. Voutier, Primitive divisors of Lucas and Lehmer sequences, Math. Comp., 64 (1995), 869-888.
  • [30] L. K. Hua, Introduction to Number Theory, Springer, Berlin, Germany, 1982.
  • [31] J. H. E. Cohn, Square Fibonacci numbers, Fibonacci Quart., 2 (1964), 109-113.
There are 31 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Murat Alan 0000-0003-2031-2725

Ruhsar Gizem Biratlı 0000-0001-6663-8435

Project Number 4141
Publication Date September 23, 2022
Submission Date December 20, 2021
Acceptance Date June 29, 2022
Published in Issue Year 2022

Cite

APA Alan, M., & Biratlı, R. G. (2022). On the Exponential Diophantine Equation $(6m^{2}+1)^{x}+(3m^{2}-1)^{y}=(3m)^{z}$. Fundamental Journal of Mathematics and Applications, 5(3), 174-180. https://doi.org/10.33401/fujma.1038699
AMA Alan M, Biratlı RG. On the Exponential Diophantine Equation $(6m^{2}+1)^{x}+(3m^{2}-1)^{y}=(3m)^{z}$. Fundam. J. Math. Appl. September 2022;5(3):174-180. doi:10.33401/fujma.1038699
Chicago Alan, Murat, and Ruhsar Gizem Biratlı. “On the Exponential Diophantine Equation $(6m^{2}+1)^{x}+(3m^{2}-1)^{y}=(3m)^{z}$”. Fundamental Journal of Mathematics and Applications 5, no. 3 (September 2022): 174-80. https://doi.org/10.33401/fujma.1038699.
EndNote Alan M, Biratlı RG (September 1, 2022) On the Exponential Diophantine Equation $(6m^{2}+1)^{x}+(3m^{2}-1)^{y}=(3m)^{z}$. Fundamental Journal of Mathematics and Applications 5 3 174–180.
IEEE M. Alan and R. G. Biratlı, “On the Exponential Diophantine Equation $(6m^{2}+1)^{x}+(3m^{2}-1)^{y}=(3m)^{z}$”, Fundam. J. Math. Appl., vol. 5, no. 3, pp. 174–180, 2022, doi: 10.33401/fujma.1038699.
ISNAD Alan, Murat - Biratlı, Ruhsar Gizem. “On the Exponential Diophantine Equation $(6m^{2}+1)^{x}+(3m^{2}-1)^{y}=(3m)^{z}$”. Fundamental Journal of Mathematics and Applications 5/3 (September 2022), 174-180. https://doi.org/10.33401/fujma.1038699.
JAMA Alan M, Biratlı RG. On the Exponential Diophantine Equation $(6m^{2}+1)^{x}+(3m^{2}-1)^{y}=(3m)^{z}$. Fundam. J. Math. Appl. 2022;5:174–180.
MLA Alan, Murat and Ruhsar Gizem Biratlı. “On the Exponential Diophantine Equation $(6m^{2}+1)^{x}+(3m^{2}-1)^{y}=(3m)^{z}$”. Fundamental Journal of Mathematics and Applications, vol. 5, no. 3, 2022, pp. 174-80, doi:10.33401/fujma.1038699.
Vancouver Alan M, Biratlı RG. On the Exponential Diophantine Equation $(6m^{2}+1)^{x}+(3m^{2}-1)^{y}=(3m)^{z}$. Fundam. J. Math. Appl. 2022;5(3):174-80.

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a