Research Article
BibTex RIS Cite

The Finiteness of Smooth Curves of Degree $\le 11$ and Genus $\le 3$ on a General Complete Intersection of a Quadric and a Quartic in $\mathbb{P}^5$

Year 2022, , 181 - 191, 23.09.2022
https://doi.org/10.33401/fujma.1069957

Abstract

Let $W\subset \mathbb{P}^5$ be a general complete intersection of a quadric hypersurface and a quartic hypersurface. In this paper, we prove that $W$ contains only finitely many smooth curves
$C\subset \mathbb{P}^5$ such that $d:= \deg ({C}) \le 11$, $g:= p_a({C}) \le 3$ and $h^1(\mathcal{O} _C(1)) =0$.

References

  • [1] E. Cotterill, Rational curves of degree $11$ on a general quintic $3$-fold , Quart. J. Math., 63 (2012), 539-568.
  • [2] D'Almeida, Courbes rationnelles de degr\'e $11$ sur une hypersurface quintique g\'en\'erale de $\mathbb {P ^4$ , Bull. Sci. Math., 136 (2012), 899-903.
  • [3] T. Johnsen, S. Kleiman, Rational curves of degree at most $9$ on a general quintic threefold, Comm. Algebra, 24 (1996), 2721-2753.
  • [4] T. Johnsen, S. Kleiman, Toward Clemens' conjecture in degrees between $10$ and $24$ , Serdica Math. J., 23 (1997), 131-142.
  • [5] T. Johnsen, A. L. Knutsen, Rational curves in Calabi-Yau threefolds, Special issue in honor of Steven L. Kleiman. Comm. Algebra, 31 (8) (2003), 3917-3953.
  • [6] S. Katz, On the finiteness of rational curves on quintic threefolds, Compositio Math., 60 (2) (1986), 151-162.
  • [7] C. Voisin, On some problems of Kobayashi and Lang, in Current developments in Mathematics, pp. 53-125, Int. Press, Somerville, MA, 2003.
  • [8] K. Oguiso, Two remarks on Calabi-Yau threefolds, J. Reine Angew. Math., 452 (1994), 153-161.
  • [9] A. L. Knutsen, On isolated smooth curves of low genera in Calabi-Yau complete intersection threefolds , Trans. Amer. Math. Soc., 384 (10) (2012), 5243-5284.
  • [10] E. Cotterill, Rational curves of degree $16$ on a general heptic fourfold, J. Pure Appl. Algebra, 218 (2014), 121-129.
  • [11] G. Hana, T. Johnsen, Rational curves on a general heptic fourfold, Bull. Belg. Math. Soc., Simon Stevin, 16 (2009), 861-885.
  • [12] C. Voisin, On a conjecture of Clemens on rational curves on hypersurfaces, J. Diff. Geometry, 44 (1) (1996), 200-213.
  • [13] N. Mohan Kumar, A. P. Rao, G. V. Ravindra, On codimension two subvarieties in hypersurfaces, Motives and algebraic cycles, 167-174, Fields Inst. Commun., 56, Amer. Math. Soc., Providence, RI, 2009.
  • [14] P. Candelas, X. de la Ossa, P. Green, L. Parkes, A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nucl. Phys. B, 359 (1991), 21-74.
  • [15] M. Kontsevich, Enumeration of rational curves via torus actions, in The Moduli Space of Curves, pp. 335-368, Progress in Math. 29, Birkh\"{a user, Basel, CH, 19958.
  • [16] M. S. Narasimhan, S. Ramanan, Deformations of the moduli space of vector bundles over an algebraic curve, Ann. of Math., 101 (1975), 391-417.
  • [17] M. Atiyah, Vector bundles over an elliptic curve, Proc. London Math. Soc., 7 (3) (1957), 414-452; reprinted in: Michael Atiyah Collected Works, Oxford, 1 (1988), 105-143.
  • [18] R. Hartshorne, Algebraic Geometry , Springer-Verlag, Berlin--Heidelberg--New York, 1977.
  • [19] L. Gruson, R. Lazarsfeld, Ch. Peskine, On a theorem of Castelnuovo and the equations defining space curves, Invent. Math., 72 (1983), 491-506.
  • [20] R. Hartshorne, A. Hirschowitz, Smoothing Algebraic Space Curves, Algebraic Geometry, Sitges 1983, 98-131, Lecture Notes in Math., 1124, Springer, Berlin, 1985.
  • [21] M. Green, R. Lazarsfeld, On the projective normality of complete linear series on an algebraic curve, Invent. Math., 83 (1) (1986), 73-90.
  • [22] D. Eisenbud, J. Harris, Finite projective schemes in linearly general position, J. Algebraic Geom., 1 (1) (1992), 15-30.
  • [23] A. Bernardi, A. Gimigliano, M. Ida, Computing symmetric rank for symmetric tensors, J. Symbolic Comput., 46 (2011) 34-53.
  • [24] Ph. Ellia, Ch. Peskine, Groupes de points de ${\bf {P ^2$: caractere et position uniforme, in: Algebraic geometry (L' Aquila, 1988), 111-116, Lecture Notes in Math., 1417, Springer, Berlin, 1990.
  • [25] D. Perrin, Courbes passant par $m$ points g\'{e n\'{e raux de $\mathbb {P ^3$ , Bull. Soc. Math., France, M\'{e moire 28/29 (1987).
  • [26] P. Jahnke, T. Peternell, I. Radloff, Some Recent Developments in the Classification Theory of Higher Dimensional Manifolds, Global Aspects of Complex Geometry, 311-357, Springer, Berlin, 2006.
Year 2022, , 181 - 191, 23.09.2022
https://doi.org/10.33401/fujma.1069957

Abstract

References

  • [1] E. Cotterill, Rational curves of degree $11$ on a general quintic $3$-fold , Quart. J. Math., 63 (2012), 539-568.
  • [2] D'Almeida, Courbes rationnelles de degr\'e $11$ sur une hypersurface quintique g\'en\'erale de $\mathbb {P ^4$ , Bull. Sci. Math., 136 (2012), 899-903.
  • [3] T. Johnsen, S. Kleiman, Rational curves of degree at most $9$ on a general quintic threefold, Comm. Algebra, 24 (1996), 2721-2753.
  • [4] T. Johnsen, S. Kleiman, Toward Clemens' conjecture in degrees between $10$ and $24$ , Serdica Math. J., 23 (1997), 131-142.
  • [5] T. Johnsen, A. L. Knutsen, Rational curves in Calabi-Yau threefolds, Special issue in honor of Steven L. Kleiman. Comm. Algebra, 31 (8) (2003), 3917-3953.
  • [6] S. Katz, On the finiteness of rational curves on quintic threefolds, Compositio Math., 60 (2) (1986), 151-162.
  • [7] C. Voisin, On some problems of Kobayashi and Lang, in Current developments in Mathematics, pp. 53-125, Int. Press, Somerville, MA, 2003.
  • [8] K. Oguiso, Two remarks on Calabi-Yau threefolds, J. Reine Angew. Math., 452 (1994), 153-161.
  • [9] A. L. Knutsen, On isolated smooth curves of low genera in Calabi-Yau complete intersection threefolds , Trans. Amer. Math. Soc., 384 (10) (2012), 5243-5284.
  • [10] E. Cotterill, Rational curves of degree $16$ on a general heptic fourfold, J. Pure Appl. Algebra, 218 (2014), 121-129.
  • [11] G. Hana, T. Johnsen, Rational curves on a general heptic fourfold, Bull. Belg. Math. Soc., Simon Stevin, 16 (2009), 861-885.
  • [12] C. Voisin, On a conjecture of Clemens on rational curves on hypersurfaces, J. Diff. Geometry, 44 (1) (1996), 200-213.
  • [13] N. Mohan Kumar, A. P. Rao, G. V. Ravindra, On codimension two subvarieties in hypersurfaces, Motives and algebraic cycles, 167-174, Fields Inst. Commun., 56, Amer. Math. Soc., Providence, RI, 2009.
  • [14] P. Candelas, X. de la Ossa, P. Green, L. Parkes, A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nucl. Phys. B, 359 (1991), 21-74.
  • [15] M. Kontsevich, Enumeration of rational curves via torus actions, in The Moduli Space of Curves, pp. 335-368, Progress in Math. 29, Birkh\"{a user, Basel, CH, 19958.
  • [16] M. S. Narasimhan, S. Ramanan, Deformations of the moduli space of vector bundles over an algebraic curve, Ann. of Math., 101 (1975), 391-417.
  • [17] M. Atiyah, Vector bundles over an elliptic curve, Proc. London Math. Soc., 7 (3) (1957), 414-452; reprinted in: Michael Atiyah Collected Works, Oxford, 1 (1988), 105-143.
  • [18] R. Hartshorne, Algebraic Geometry , Springer-Verlag, Berlin--Heidelberg--New York, 1977.
  • [19] L. Gruson, R. Lazarsfeld, Ch. Peskine, On a theorem of Castelnuovo and the equations defining space curves, Invent. Math., 72 (1983), 491-506.
  • [20] R. Hartshorne, A. Hirschowitz, Smoothing Algebraic Space Curves, Algebraic Geometry, Sitges 1983, 98-131, Lecture Notes in Math., 1124, Springer, Berlin, 1985.
  • [21] M. Green, R. Lazarsfeld, On the projective normality of complete linear series on an algebraic curve, Invent. Math., 83 (1) (1986), 73-90.
  • [22] D. Eisenbud, J. Harris, Finite projective schemes in linearly general position, J. Algebraic Geom., 1 (1) (1992), 15-30.
  • [23] A. Bernardi, A. Gimigliano, M. Ida, Computing symmetric rank for symmetric tensors, J. Symbolic Comput., 46 (2011) 34-53.
  • [24] Ph. Ellia, Ch. Peskine, Groupes de points de ${\bf {P ^2$: caractere et position uniforme, in: Algebraic geometry (L' Aquila, 1988), 111-116, Lecture Notes in Math., 1417, Springer, Berlin, 1990.
  • [25] D. Perrin, Courbes passant par $m$ points g\'{e n\'{e raux de $\mathbb {P ^3$ , Bull. Soc. Math., France, M\'{e moire 28/29 (1987).
  • [26] P. Jahnke, T. Peternell, I. Radloff, Some Recent Developments in the Classification Theory of Higher Dimensional Manifolds, Global Aspects of Complex Geometry, 311-357, Springer, Berlin, 2006.
There are 26 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Edoardo Ballico 0000-0002-1432-7413

Publication Date September 23, 2022
Submission Date February 8, 2022
Acceptance Date August 7, 2022
Published in Issue Year 2022

Cite

APA Ballico, E. (2022). The Finiteness of Smooth Curves of Degree $\le 11$ and Genus $\le 3$ on a General Complete Intersection of a Quadric and a Quartic in $\mathbb{P}^5$. Fundamental Journal of Mathematics and Applications, 5(3), 181-191. https://doi.org/10.33401/fujma.1069957
AMA Ballico E. The Finiteness of Smooth Curves of Degree $\le 11$ and Genus $\le 3$ on a General Complete Intersection of a Quadric and a Quartic in $\mathbb{P}^5$. Fundam. J. Math. Appl. September 2022;5(3):181-191. doi:10.33401/fujma.1069957
Chicago Ballico, Edoardo. “The Finiteness of Smooth Curves of Degree $\le 11$ and Genus $\le 3$ on a General Complete Intersection of a Quadric and a Quartic in $\mathbb{P}^5$”. Fundamental Journal of Mathematics and Applications 5, no. 3 (September 2022): 181-91. https://doi.org/10.33401/fujma.1069957.
EndNote Ballico E (September 1, 2022) The Finiteness of Smooth Curves of Degree $\le 11$ and Genus $\le 3$ on a General Complete Intersection of a Quadric and a Quartic in $\mathbb{P}^5$. Fundamental Journal of Mathematics and Applications 5 3 181–191.
IEEE E. Ballico, “The Finiteness of Smooth Curves of Degree $\le 11$ and Genus $\le 3$ on a General Complete Intersection of a Quadric and a Quartic in $\mathbb{P}^5$”, Fundam. J. Math. Appl., vol. 5, no. 3, pp. 181–191, 2022, doi: 10.33401/fujma.1069957.
ISNAD Ballico, Edoardo. “The Finiteness of Smooth Curves of Degree $\le 11$ and Genus $\le 3$ on a General Complete Intersection of a Quadric and a Quartic in $\mathbb{P}^5$”. Fundamental Journal of Mathematics and Applications 5/3 (September 2022), 181-191. https://doi.org/10.33401/fujma.1069957.
JAMA Ballico E. The Finiteness of Smooth Curves of Degree $\le 11$ and Genus $\le 3$ on a General Complete Intersection of a Quadric and a Quartic in $\mathbb{P}^5$. Fundam. J. Math. Appl. 2022;5:181–191.
MLA Ballico, Edoardo. “The Finiteness of Smooth Curves of Degree $\le 11$ and Genus $\le 3$ on a General Complete Intersection of a Quadric and a Quartic in $\mathbb{P}^5$”. Fundamental Journal of Mathematics and Applications, vol. 5, no. 3, 2022, pp. 181-9, doi:10.33401/fujma.1069957.
Vancouver Ballico E. The Finiteness of Smooth Curves of Degree $\le 11$ and Genus $\le 3$ on a General Complete Intersection of a Quadric and a Quartic in $\mathbb{P}^5$. Fundam. J. Math. Appl. 2022;5(3):181-9.

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a