Research Article
BibTex RIS Cite
Year 2023, , 1 - 11, 29.03.2023
https://doi.org/10.33401/fujma.1144277

Abstract

References

  • [1] J. Boussinesq, Theorie de I’intumescence liquide, applelee onde solitaire ou de translation, se propageant dans un canal rectangulaire, C. R. Acad. Sci., 72 (1871), 755-759.
  • [2] J. Boussinesq, Theorie des ondes et des remous qui se progagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond, J. Math. Pures Appl., 17 (1872), 55-108.
  • [3] J. Zhou, H. Zhang, Well-posedness of solutions for the sixth-order Boussinesq equation with linear strong damping and nonlinear source, J. Nonlinear Sci., 31 (2021), 1-61.
  • [4] J. Liu, X. Wang, J. Zhou, H. Zhang, Blow-up phenomena for the sixth-order Boussinesq equation with fourth-order dispersion term and nonlinear source, Discrete Contin. Dyn. Syst. - S, 14 (2021), 4321-4335.
  • [5] H. Wang, A. Esfahani, Global rough solutions to the sixth-order Boussinesq equation, Nonlinear Anal. Theory Methods Appl., 102 (2014), 97-104.
  • [6] H. Yang, An inverse problem for the sixth-order linear Boussinesq-type equation, UPB Sci. Bull. A: Appl. Math. Phys., 82 (2020), 27-36.
  • [7] C.I. Christov, G.A. Maugin, M.G. Velarde, Well-posed Boussinesq paradigm with purely spatial higher-order derivatives, Phys. Rev. E, 54 (1996), 3621-3638.
  • [8] S. Li, M. Chen, B.Y. Zhang, Exact controllability and stability of the sixth order Boussinesq equation, (2018), arXiv:1811.05943 [math.AP].
  • [9] S. Amirov, M. Anutgan, Analytical solitary wave solutions for the nonlinear analogues of the Boussinesq and sixth-order modified Boussinesq equations, J. Appl. Anal. Comput., 7 (2017), 1613-1623.
  • [10] A.M. Wazwaz, The tanh-coth method for solitons and kink solutions for nonlinear parabolic equations, Appl. Math. Comput., 188 (2007), 1467-1475.
  • [11] O.F. Gozukizil, S. Akcagil, The tanh-coth method for some nonlinear pseudoparabolic equations with exact solutions, Adv. Differ. Equ., 2013 (2013), Article ID 143, 18 pages, doi: 10.1186/1687-1847-2013-143.
  • [12] F. Al-Askar, W. Mohammed, A. Albalahi, M. El-Morshedy, The impact of the Wiener process on the analytical solutions of the stochastic (2+1)-dimensional breaking soliton equation by using tanh-coth method, Math., 10 (2022), Article ID 817, 9 pages, doi: 10.3390/math10050817.
  • [13] W. Mohammed, M. El-Morshedy, The influence of multiplicative noise on the stochastic exact solutions of the Nizhnik-Novikov-Veselov system, Math. Comput. Simul., 190 (2021), 192-202.
  • [14] A. Rani, A. Zulfiqar, J. Ahmad, Q. Hassan, New soliton wave structures of fractional Gilson-Pickering equation using tanh-coth method and their applications, Results Phys., 29 (2021), Article ID 104724, 14 pages, doi: 10.1016/j.rinp.2021.104724.
  • [15] A. Mamum, S. Ananna, T. An, M. Asaduzzaman, M. Miah, Solitary wave structures of a family of 3D fractional WBBM equation via the tanh-coth approach, Partial Differ. Equ. Appl. Math., 5 (2022), Article ID 100237, 6 pages, doi: 10.1016/j.padiff.2021.100237.
  • [16] A.M. Wazwaz, New traveling wave solutions to the Boussinesq and the Klein-Gordon equations, Commun. Nonlinear Sci. Numer. Simul., 13 (2008), 889-901.
  • [17] M.T. Darvish, S. Arbabi, M. Najafi, A.M. Wazwaz, Traveling wave solutions of a (2+1)-dimensional Zakharov-like equation by the first integral method and the tanh method, Optik, 127 (2016), 6312-6321.
  • [18] S. Akcagil, T. Aydemir, New exact solutions for the Khokhlov-Zabolotskaya-Kuznetsov, the Newell-Whitehead-Segel and the Rabinovich wave equations by using a new modification of the tanh coth method, Cogent Math., 3 (2016), Article ID 1193104, 12 pages, doi: 10.1080/23311835.2016.1193104.
  • [19] Z. Yang, W. Zhong, W. Zhong, M. Belic, New traveling wave and soliton solutions of the sine-Gordon equation with a variable coefficient, Optik, 198 (2019), Article ID 163247, 5 pages, doi: 10.1016/j.ijleo.2019.163247.
  • [20] J. Fang, C. Dai, Optical solitons of a time-fractional higher-order nonlinear Schrodinger equation, Optik, 209 (2020), Article ID 1645574, doi: 10.1016/j.ijleo.2020.164574.
  • [21] A.R. Seadawy, K. El-Rashidy, Traveling wave solutions for some coupled nonlinear evolution equations, Math. Comput. Model., 57 (2013), 1371-1379.
  • [22] M. Najafi, S. Arbabi, Traveling wave solutions for nonlinear Schrodinger equations, Optik, 126 (2015), 3992-3997.
  • [23] A. Bansal, R. Gupta, Modified (G0=G)-expansion method for finding exact wave solutions of the coupled Klein-Gordon-Schrodinger equation, Math. Methods Appl. Sci., 35 (2012), 1175-1187.
  • [24] A.M. Wazwaz, The tanh method: exact solutions of the sine-Gordon and the sinh-Gordon equations, Appl. Math. Comput., 167 (2005), 1196-1210.

New Traveling Wave Solutions for the Sixth-order Boussinesq Equation

Year 2023, , 1 - 11, 29.03.2023
https://doi.org/10.33401/fujma.1144277

Abstract

In this paper, we investigate the new traveling wave solutions for the sixth-order Boussinesq equation using the tanh-coth method. Such a method is a type of expansion method that represents the solutions of partial differential equations as polynomials of $\tanh$ and $\coth$ functions. We discover several new traveling wave solutions for the sixth-order Boussinesq equation with different parameters, which are of fundamental importance for various applications.

References

  • [1] J. Boussinesq, Theorie de I’intumescence liquide, applelee onde solitaire ou de translation, se propageant dans un canal rectangulaire, C. R. Acad. Sci., 72 (1871), 755-759.
  • [2] J. Boussinesq, Theorie des ondes et des remous qui se progagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond, J. Math. Pures Appl., 17 (1872), 55-108.
  • [3] J. Zhou, H. Zhang, Well-posedness of solutions for the sixth-order Boussinesq equation with linear strong damping and nonlinear source, J. Nonlinear Sci., 31 (2021), 1-61.
  • [4] J. Liu, X. Wang, J. Zhou, H. Zhang, Blow-up phenomena for the sixth-order Boussinesq equation with fourth-order dispersion term and nonlinear source, Discrete Contin. Dyn. Syst. - S, 14 (2021), 4321-4335.
  • [5] H. Wang, A. Esfahani, Global rough solutions to the sixth-order Boussinesq equation, Nonlinear Anal. Theory Methods Appl., 102 (2014), 97-104.
  • [6] H. Yang, An inverse problem for the sixth-order linear Boussinesq-type equation, UPB Sci. Bull. A: Appl. Math. Phys., 82 (2020), 27-36.
  • [7] C.I. Christov, G.A. Maugin, M.G. Velarde, Well-posed Boussinesq paradigm with purely spatial higher-order derivatives, Phys. Rev. E, 54 (1996), 3621-3638.
  • [8] S. Li, M. Chen, B.Y. Zhang, Exact controllability and stability of the sixth order Boussinesq equation, (2018), arXiv:1811.05943 [math.AP].
  • [9] S. Amirov, M. Anutgan, Analytical solitary wave solutions for the nonlinear analogues of the Boussinesq and sixth-order modified Boussinesq equations, J. Appl. Anal. Comput., 7 (2017), 1613-1623.
  • [10] A.M. Wazwaz, The tanh-coth method for solitons and kink solutions for nonlinear parabolic equations, Appl. Math. Comput., 188 (2007), 1467-1475.
  • [11] O.F. Gozukizil, S. Akcagil, The tanh-coth method for some nonlinear pseudoparabolic equations with exact solutions, Adv. Differ. Equ., 2013 (2013), Article ID 143, 18 pages, doi: 10.1186/1687-1847-2013-143.
  • [12] F. Al-Askar, W. Mohammed, A. Albalahi, M. El-Morshedy, The impact of the Wiener process on the analytical solutions of the stochastic (2+1)-dimensional breaking soliton equation by using tanh-coth method, Math., 10 (2022), Article ID 817, 9 pages, doi: 10.3390/math10050817.
  • [13] W. Mohammed, M. El-Morshedy, The influence of multiplicative noise on the stochastic exact solutions of the Nizhnik-Novikov-Veselov system, Math. Comput. Simul., 190 (2021), 192-202.
  • [14] A. Rani, A. Zulfiqar, J. Ahmad, Q. Hassan, New soliton wave structures of fractional Gilson-Pickering equation using tanh-coth method and their applications, Results Phys., 29 (2021), Article ID 104724, 14 pages, doi: 10.1016/j.rinp.2021.104724.
  • [15] A. Mamum, S. Ananna, T. An, M. Asaduzzaman, M. Miah, Solitary wave structures of a family of 3D fractional WBBM equation via the tanh-coth approach, Partial Differ. Equ. Appl. Math., 5 (2022), Article ID 100237, 6 pages, doi: 10.1016/j.padiff.2021.100237.
  • [16] A.M. Wazwaz, New traveling wave solutions to the Boussinesq and the Klein-Gordon equations, Commun. Nonlinear Sci. Numer. Simul., 13 (2008), 889-901.
  • [17] M.T. Darvish, S. Arbabi, M. Najafi, A.M. Wazwaz, Traveling wave solutions of a (2+1)-dimensional Zakharov-like equation by the first integral method and the tanh method, Optik, 127 (2016), 6312-6321.
  • [18] S. Akcagil, T. Aydemir, New exact solutions for the Khokhlov-Zabolotskaya-Kuznetsov, the Newell-Whitehead-Segel and the Rabinovich wave equations by using a new modification of the tanh coth method, Cogent Math., 3 (2016), Article ID 1193104, 12 pages, doi: 10.1080/23311835.2016.1193104.
  • [19] Z. Yang, W. Zhong, W. Zhong, M. Belic, New traveling wave and soliton solutions of the sine-Gordon equation with a variable coefficient, Optik, 198 (2019), Article ID 163247, 5 pages, doi: 10.1016/j.ijleo.2019.163247.
  • [20] J. Fang, C. Dai, Optical solitons of a time-fractional higher-order nonlinear Schrodinger equation, Optik, 209 (2020), Article ID 1645574, doi: 10.1016/j.ijleo.2020.164574.
  • [21] A.R. Seadawy, K. El-Rashidy, Traveling wave solutions for some coupled nonlinear evolution equations, Math. Comput. Model., 57 (2013), 1371-1379.
  • [22] M. Najafi, S. Arbabi, Traveling wave solutions for nonlinear Schrodinger equations, Optik, 126 (2015), 3992-3997.
  • [23] A. Bansal, R. Gupta, Modified (G0=G)-expansion method for finding exact wave solutions of the coupled Klein-Gordon-Schrodinger equation, Math. Methods Appl. Sci., 35 (2012), 1175-1187.
  • [24] A.M. Wazwaz, The tanh method: exact solutions of the sine-Gordon and the sinh-Gordon equations, Appl. Math. Comput., 167 (2005), 1196-1210.
There are 24 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

He Yang 0000-0001-9608-4920

Publication Date March 29, 2023
Submission Date July 15, 2022
Acceptance Date November 17, 2022
Published in Issue Year 2023

Cite

APA Yang, H. (2023). New Traveling Wave Solutions for the Sixth-order Boussinesq Equation. Fundamental Journal of Mathematics and Applications, 6(1), 1-11. https://doi.org/10.33401/fujma.1144277
AMA Yang H. New Traveling Wave Solutions for the Sixth-order Boussinesq Equation. Fundam. J. Math. Appl. March 2023;6(1):1-11. doi:10.33401/fujma.1144277
Chicago Yang, He. “New Traveling Wave Solutions for the Sixth-Order Boussinesq Equation”. Fundamental Journal of Mathematics and Applications 6, no. 1 (March 2023): 1-11. https://doi.org/10.33401/fujma.1144277.
EndNote Yang H (March 1, 2023) New Traveling Wave Solutions for the Sixth-order Boussinesq Equation. Fundamental Journal of Mathematics and Applications 6 1 1–11.
IEEE H. Yang, “New Traveling Wave Solutions for the Sixth-order Boussinesq Equation”, Fundam. J. Math. Appl., vol. 6, no. 1, pp. 1–11, 2023, doi: 10.33401/fujma.1144277.
ISNAD Yang, He. “New Traveling Wave Solutions for the Sixth-Order Boussinesq Equation”. Fundamental Journal of Mathematics and Applications 6/1 (March 2023), 1-11. https://doi.org/10.33401/fujma.1144277.
JAMA Yang H. New Traveling Wave Solutions for the Sixth-order Boussinesq Equation. Fundam. J. Math. Appl. 2023;6:1–11.
MLA Yang, He. “New Traveling Wave Solutions for the Sixth-Order Boussinesq Equation”. Fundamental Journal of Mathematics and Applications, vol. 6, no. 1, 2023, pp. 1-11, doi:10.33401/fujma.1144277.
Vancouver Yang H. New Traveling Wave Solutions for the Sixth-order Boussinesq Equation. Fundam. J. Math. Appl. 2023;6(1):1-11.

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a