Research Article
BibTex RIS Cite
Year 2023, , 107 - 116, 30.06.2023
https://doi.org/10.33401/fujma.1254301

Abstract

References

  • [1] N. Aronzajn, Theory of reproducing kernels, Trans. Amer. Math. Soc., 68 (1950), 337-404.
  • [2] F. A. Berezin, Covariant and contravariant symbols for operators, Math. USSR-Izv., 6 (1972), 1117-1151.
  • [3] H. Başaran, M. Gürdal, A. N. Güncan, Some operator inequalities associated with Kantorovich and Hölder-McCarthy inequalities and their applications, Turkish J. Math., 43(1) (2019), 523-532.
  • [4] H. Başaran, M. Gürdal, Berezin number inequalities via inequality, Honam Math. J., 43(3) (2021), 523-537.
  • [5] H. Başaran, V. Gürdal, Berezin radius and Cauchy-Schwarz inequality, Montes Taurus J. Pure Appl. Math., 5(3) (2023), 16-22.
  • [6] H. Başaran, V. Gürdal, On Berezin radius inequalities via Cauchy-Schwarz type inequalities, Malaya J. Mat., 11(2) (2023), 127-141.
  • [7] M. T. Garayev, M. W. Alomari, Inequalities for the Berezin number of operators and related questions, Complex Anal. Oper. Theory, 15(30) (2021), 1-30.
  • [8] M. Gürdal, H. Başaran, A-Berezin number of operators, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 48(1) (2022), 77-87.
  • [9] M. B. Huban, H. Bas¸aran, M. G¨urdal, New upper bounds related to the Berezin number inequalities, J. Inequal. Spec. Funct., 12(3) (2021), 1-12.
  • [10] M. T. Karaev, Reproducing kernels and Berezin symbols techniques in various questions of operator theory, Complex Anal. Oper. Theory, 7 (2013), 983-1018.
  • [11] W. Bani-Domi, F. Kittaneh, Norm and numerical radius inequalities for Hilbert space operators, Linear Multilinear Algebra, 69(5) (2021), 934-945.
  • [12] S. S. Dragomir, Power inequalities for the numerical radius of a product of two operators in Hilbert spaces, Sarajevo J. Math., 5 (2009), 269–278.
  • [13] F. Kittaneh, Norm inequalities for sums of positive operators, J. Operator Theory, 48 (2002), 95–103.
  • [14] F. Kittaneh, H. R. Moradi, Cauchy-Schwarz type inequalities and applications to numerical radius inequalities, Math. Inequal. Appl., 23(3) (2020), 1117-1125.
  • [15] M. T. Karaev, Berezin symbol, and invertibility of operators on the functional Hilbert spaces, J. Funct. Anal., 238 (2006), 181-192.
  • [16] M. B. Huban, H. Başaran, M. Gürdal, Some new inequalities via Berezin numbers, Turk. J. Math. Comput. Sci., 14(1) (2022), 129-137.
  • [17] M. B. Huban, H. Başaran, M. Gürdal, Berezin number inequalities via convex functions, Filomat, 36(7) (2022), 2333-2344.
  • [18] H. Başaran, M. B. Huban, M. Gürdal, Inequalities related to Berezin norm and Berezin number of operators, Bull. Math. Anal. Appl., 14(2) (2022), 1-11.
  • [19] M. Bakherad, Some Berezin number inequalities for operator matrices, Czechoslovak Math. J., 68(4) (2018), 997-1009.
  • [20] M. Bakherad, M. T. Garayev, Berezin number inequalities for operators, Concr. Oper., 6(1) (2019), 33-43.
  • [21] M. Bakherad, M. Hajmohamadi, R. Lashkaripour, S. Sahoo, Some extensions of Berezin number inequalities on operators, Rocky Mountain J. Math., 51(6) (2021), 1941-1951.
  • [22] A. Abu-Omar, F. Kittaneh, Numerical radius inequalities for nn operator matrices, Linear Algebra Appl., 468 (2015), 18-26.
  • [23] M. Bakherad, K. Shebrawi, Upper bounds for numerical radius inequalities involving off-diagonal operator matrices, Ann. Funct. Anal., 9(3) (2018), 297-309.
  • [24] F. Kittaneh, Notes on some inequalities for Hilbert space operators, Publ. Res. Inst. Math. Sci., 24(2) (1988), 283-293.
  • [25] J. Aujla, F. Silva, Weak majorization inequalities and convex functions, Linear Algebra Appl., 369 (2003), 217-233.
  • [26] S. S. Sahoo, N. Das, D. Mishra, Berezin number and numerical radius inequalities for operators on Hilbert spaces, Adv. Oper. Theory, 5 (2020), 714-727.
  • [27] M. L. Buzano, Generalizzatione della disuguaglianza di Cauchy-Schwarz, Rend. Sem. Mat. Univ. e Politec. Torino, 31(1971/73) (1974) 405-409.
  • [28] V. Gürdal, H. Başaran, M. B. Huban, Further Berezin radius inequalities, Palest. J. Math., 12(1) (2023), 757–767.

Berezin Radius Inequalities of Functional Hilbert Space Operators

Year 2023, , 107 - 116, 30.06.2023
https://doi.org/10.33401/fujma.1254301

Abstract

We investigate new upper bounds for the Berezin radius and Berezin norm of $2\times2$ operator matrices using the Cauchy-Buzano inequality, and we propose a required condition for the equality case in the triangle inequalities for the Berezin norms. We also show various Berezin radius inequalities for matrices with $2\times2$ operators.

References

  • [1] N. Aronzajn, Theory of reproducing kernels, Trans. Amer. Math. Soc., 68 (1950), 337-404.
  • [2] F. A. Berezin, Covariant and contravariant symbols for operators, Math. USSR-Izv., 6 (1972), 1117-1151.
  • [3] H. Başaran, M. Gürdal, A. N. Güncan, Some operator inequalities associated with Kantorovich and Hölder-McCarthy inequalities and their applications, Turkish J. Math., 43(1) (2019), 523-532.
  • [4] H. Başaran, M. Gürdal, Berezin number inequalities via inequality, Honam Math. J., 43(3) (2021), 523-537.
  • [5] H. Başaran, V. Gürdal, Berezin radius and Cauchy-Schwarz inequality, Montes Taurus J. Pure Appl. Math., 5(3) (2023), 16-22.
  • [6] H. Başaran, V. Gürdal, On Berezin radius inequalities via Cauchy-Schwarz type inequalities, Malaya J. Mat., 11(2) (2023), 127-141.
  • [7] M. T. Garayev, M. W. Alomari, Inequalities for the Berezin number of operators and related questions, Complex Anal. Oper. Theory, 15(30) (2021), 1-30.
  • [8] M. Gürdal, H. Başaran, A-Berezin number of operators, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 48(1) (2022), 77-87.
  • [9] M. B. Huban, H. Bas¸aran, M. G¨urdal, New upper bounds related to the Berezin number inequalities, J. Inequal. Spec. Funct., 12(3) (2021), 1-12.
  • [10] M. T. Karaev, Reproducing kernels and Berezin symbols techniques in various questions of operator theory, Complex Anal. Oper. Theory, 7 (2013), 983-1018.
  • [11] W. Bani-Domi, F. Kittaneh, Norm and numerical radius inequalities for Hilbert space operators, Linear Multilinear Algebra, 69(5) (2021), 934-945.
  • [12] S. S. Dragomir, Power inequalities for the numerical radius of a product of two operators in Hilbert spaces, Sarajevo J. Math., 5 (2009), 269–278.
  • [13] F. Kittaneh, Norm inequalities for sums of positive operators, J. Operator Theory, 48 (2002), 95–103.
  • [14] F. Kittaneh, H. R. Moradi, Cauchy-Schwarz type inequalities and applications to numerical radius inequalities, Math. Inequal. Appl., 23(3) (2020), 1117-1125.
  • [15] M. T. Karaev, Berezin symbol, and invertibility of operators on the functional Hilbert spaces, J. Funct. Anal., 238 (2006), 181-192.
  • [16] M. B. Huban, H. Başaran, M. Gürdal, Some new inequalities via Berezin numbers, Turk. J. Math. Comput. Sci., 14(1) (2022), 129-137.
  • [17] M. B. Huban, H. Başaran, M. Gürdal, Berezin number inequalities via convex functions, Filomat, 36(7) (2022), 2333-2344.
  • [18] H. Başaran, M. B. Huban, M. Gürdal, Inequalities related to Berezin norm and Berezin number of operators, Bull. Math. Anal. Appl., 14(2) (2022), 1-11.
  • [19] M. Bakherad, Some Berezin number inequalities for operator matrices, Czechoslovak Math. J., 68(4) (2018), 997-1009.
  • [20] M. Bakherad, M. T. Garayev, Berezin number inequalities for operators, Concr. Oper., 6(1) (2019), 33-43.
  • [21] M. Bakherad, M. Hajmohamadi, R. Lashkaripour, S. Sahoo, Some extensions of Berezin number inequalities on operators, Rocky Mountain J. Math., 51(6) (2021), 1941-1951.
  • [22] A. Abu-Omar, F. Kittaneh, Numerical radius inequalities for nn operator matrices, Linear Algebra Appl., 468 (2015), 18-26.
  • [23] M. Bakherad, K. Shebrawi, Upper bounds for numerical radius inequalities involving off-diagonal operator matrices, Ann. Funct. Anal., 9(3) (2018), 297-309.
  • [24] F. Kittaneh, Notes on some inequalities for Hilbert space operators, Publ. Res. Inst. Math. Sci., 24(2) (1988), 283-293.
  • [25] J. Aujla, F. Silva, Weak majorization inequalities and convex functions, Linear Algebra Appl., 369 (2003), 217-233.
  • [26] S. S. Sahoo, N. Das, D. Mishra, Berezin number and numerical radius inequalities for operators on Hilbert spaces, Adv. Oper. Theory, 5 (2020), 714-727.
  • [27] M. L. Buzano, Generalizzatione della disuguaglianza di Cauchy-Schwarz, Rend. Sem. Mat. Univ. e Politec. Torino, 31(1971/73) (1974) 405-409.
  • [28] V. Gürdal, H. Başaran, M. B. Huban, Further Berezin radius inequalities, Palest. J. Math., 12(1) (2023), 757–767.
There are 28 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Hamdullah Başaran 0000-0002-9864-9515

Mehmet Gürdal 0000-0003-0866-1869

Early Pub Date June 7, 2023
Publication Date June 30, 2023
Submission Date February 21, 2023
Acceptance Date May 27, 2023
Published in Issue Year 2023

Cite

APA Başaran, H., & Gürdal, M. (2023). Berezin Radius Inequalities of Functional Hilbert Space Operators. Fundamental Journal of Mathematics and Applications, 6(2), 107-116. https://doi.org/10.33401/fujma.1254301
AMA Başaran H, Gürdal M. Berezin Radius Inequalities of Functional Hilbert Space Operators. Fundam. J. Math. Appl. June 2023;6(2):107-116. doi:10.33401/fujma.1254301
Chicago Başaran, Hamdullah, and Mehmet Gürdal. “Berezin Radius Inequalities of Functional Hilbert Space Operators”. Fundamental Journal of Mathematics and Applications 6, no. 2 (June 2023): 107-16. https://doi.org/10.33401/fujma.1254301.
EndNote Başaran H, Gürdal M (June 1, 2023) Berezin Radius Inequalities of Functional Hilbert Space Operators. Fundamental Journal of Mathematics and Applications 6 2 107–116.
IEEE H. Başaran and M. Gürdal, “Berezin Radius Inequalities of Functional Hilbert Space Operators”, Fundam. J. Math. Appl., vol. 6, no. 2, pp. 107–116, 2023, doi: 10.33401/fujma.1254301.
ISNAD Başaran, Hamdullah - Gürdal, Mehmet. “Berezin Radius Inequalities of Functional Hilbert Space Operators”. Fundamental Journal of Mathematics and Applications 6/2 (June 2023), 107-116. https://doi.org/10.33401/fujma.1254301.
JAMA Başaran H, Gürdal M. Berezin Radius Inequalities of Functional Hilbert Space Operators. Fundam. J. Math. Appl. 2023;6:107–116.
MLA Başaran, Hamdullah and Mehmet Gürdal. “Berezin Radius Inequalities of Functional Hilbert Space Operators”. Fundamental Journal of Mathematics and Applications, vol. 6, no. 2, 2023, pp. 107-16, doi:10.33401/fujma.1254301.
Vancouver Başaran H, Gürdal M. Berezin Radius Inequalities of Functional Hilbert Space Operators. Fundam. J. Math. Appl. 2023;6(2):107-16.

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a