Research Article
BibTex RIS Cite

On a Generalized Mittag-Leffler Function and Fractional Integrals

Year 2024, , 12 - 25, 31.03.2024
https://doi.org/10.33401/fujma.1378534

Abstract

The object of this paper is to study a generalized Mittag-Leffler function and a modified general class of functions which is reducible to several special functions. convergent conditions of these functions are discussed. Some results pertaining to the generalized Mittag-Leffler function and generating relations involving these functions are derived. Further, fractional integrals involving these functions are achieved. Some illustrative exclusive cases of the results are presented.

References

  • [1] E.W. Barnes, The asymptotic expansion of integral functions defined by Taylor’s series, Philos. Trans. Roy. Soc. London Ser. A Math. Phys. Sci., 206 (1906), 249-297.
  • [2] E.M. Wright, The asymptotic expansion of integral functions defined by Taylor series, I. Philos. Trans. Roy. Soc. London Ser. A Math. Phys. Sci., 238 (1940), 423-451.
  • [3] T.R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J., 19 (1971), 7-15.
  • [4] H.M. Srivastava, An introductory overview of fractional-calculus operators based upon the Fox-Wright and related higher transcendental functions, J. Adv. Engrg. comput., 5(3) (2021), 135-166. $\href{http://dx.doi.org/10.55579/jaec.202153.340}{[\mbox{CrossRef}]}$
  • [5] V. Kumar, On the generalized Hurwitz-Lerch zeta function and generalized Lambert transform, J. Classical Anal., 17 (1) (2021), 55–67. $\href{http://dx.doi.org/10.7153/jca-2021-17-05}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85132267417&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+the+generalized+Hurwitz-Lerch+zeta+function+and+generalized+Lambert+transform%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=0}{[\mbox{Scopus}]} %\href{}{[\mbox{Web of Science}]}$
  • [6] G.M. Mittag-Leffler, Sur la nouvelle function Ea (x), C. R. Acad. Sci. Paris, 137 (1903), 554-558.
  • [7] A. Wiman, Uber den Fundamentalsatz in der Teorie der Funktionen Ea (x), Acta. Math., 29 (1905), 191-201.
  • [8] P. Humbert and R.P. Agarwal, la fonction de Mittag-Leffler et quelques unes de ses generalizations, Bull. Sci. Math., 77(2) (1953), 180-185.
  • [9] N. Khan, M. Aman and T. Usman, Extended Beta, hypergeometric and confluent hypergeometric functions via multi-index Mittag-Leffler function, Proc. Jang. Math. Soc., 25(1) (2022), 43-58. $\href{http://dx.doi.org/10.17777/pjms2022.25.1.43}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85130358565&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Extended+Beta%2C+hypergeometric+and+confluent+hypergeometric+functions+via+multi-index+Mittag-Leffler+function%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=0}{[\mbox{Scopus}]}$
  • [10] M. Kamarujjama, N.U. Khan and O. Khan, Extended type k-Mittag-Leffler function and its applications, Int. J. Appl. Comput. Math., 5(3) (2019), Article No. 72. $\href{https://doi.org/10.1007/s40819-019-0656-5}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85070418196&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Extended+type+k-Mittag-Leffler+function+and+its+applications%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=0}{[\mbox{Scopus}]} %\href{}{[\mbox{Web of Science}]}$
  • [11] M.A. Khan and S. Ahmed, On some properties of the generalized Mittag-Leffler function, Springer Plus, 2 (2013), Article No. 337. $\href{https://doi.org/10.1186/2193-1801-2-337}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84881253775&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+some+properties+of+the+generalized+Mittag-Leffler+function%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000209465000135}{[\mbox{Web of Science}]}$
  • [12] M.A. Khan, S. Ahmed, On some properties of fractional calculus operators associated with generalized Mittag-Leffler function, Thai J. Math., 3 (2013), 645-654. $\href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84885450498&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+some+properties+of+fractional+calculus+operators+associated+with++generalized+Mittag-Leffler+function%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000416702200011}{[\mbox{Web of Science}]}$
  • [13] N.U. Khan and M.I. Khan, Results concerning the analysis of generalized Mittag-Leffler function associated with Euler type integrals, Fasciculi Mathematici, 66 (2023), 49-59. $\href{http://dx.doi.org/10.21008/j.0044-4413.2023.0004}{[\mbox{CrossRef}]}$
  • [14] N. Khan, M.I. Khan, T. Usman, K. Nonlaopon and S. Al-Omari Unified integrals of generalized Mittag-Leffler functions and their graphical numerical investigation, Symmetry, 14 (5) (2022), 869. $\href{https://doi.org/10.3390/sym14050869}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85129752996&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Unified+integrals+of+++generalized+Mittag-Leffler+functions+and+their+graphical+numerical+investigation%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000801507300001}{[\mbox{Web of Science}]} $
  • [15] A.K. Shukla and J.C. Prajapati, On a generalized Mittag-Leffler function and its properties, J. Math. Anal. Appl., 336 (2007), 97-112. $\href{https://doi.org/10.1016/j.jmaa.2007.03.018}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-34548078160&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+a+generalization+of+Mittag-Leffler+function+and+its+properties%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=2}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000249744000006}{[\mbox{Web of Science}]}$
  • [16] T.O. Salim, Some properties relating to the generalized Mittag-Leffler function, Adv. Appl. Math. Anal., 4 (2009), 21-30.
  • [17] H.M. Srivastava, Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformations, J. Nonlinear Convex Anal., 22(8) (2021), 1501-1520.
  • [18] S.P. Goyal and R.K. Laddha, On the generalized Riemann zeta functions and the generalized Lambert transform, Ganita Sandesh, 11 (2) (1997), 99-108.
  • [19] A. Erdelyi, W. Magnus, F. Oberhettinger and F.G. Tricomi, Higher Transcendental Functions, vol. I, McGraw-Hill Book Company, New York, 1953.
  • [20] A. Erdelyi, W. Magnus, F. Oberhettinger and F.G. Tricomi, Tables of Integral Transforms, vol. II, McGraw-Hill Book Company, New York, 1954.
  • [21] E.M. Wright, The asymptotic expansion of the generalized Bessel function, Proc. London Math. Soc., 38 (2) (1935), 257-270.
  • [22] A. Erdelyi, W. Magnus, F. Oberhettinger and F.G. Tricomi, Higher Transcendental Functions, vol. II, McGraw-Hill Book Company, New York, 1953.
Year 2024, , 12 - 25, 31.03.2024
https://doi.org/10.33401/fujma.1378534

Abstract

References

  • [1] E.W. Barnes, The asymptotic expansion of integral functions defined by Taylor’s series, Philos. Trans. Roy. Soc. London Ser. A Math. Phys. Sci., 206 (1906), 249-297.
  • [2] E.M. Wright, The asymptotic expansion of integral functions defined by Taylor series, I. Philos. Trans. Roy. Soc. London Ser. A Math. Phys. Sci., 238 (1940), 423-451.
  • [3] T.R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J., 19 (1971), 7-15.
  • [4] H.M. Srivastava, An introductory overview of fractional-calculus operators based upon the Fox-Wright and related higher transcendental functions, J. Adv. Engrg. comput., 5(3) (2021), 135-166. $\href{http://dx.doi.org/10.55579/jaec.202153.340}{[\mbox{CrossRef}]}$
  • [5] V. Kumar, On the generalized Hurwitz-Lerch zeta function and generalized Lambert transform, J. Classical Anal., 17 (1) (2021), 55–67. $\href{http://dx.doi.org/10.7153/jca-2021-17-05}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85132267417&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+the+generalized+Hurwitz-Lerch+zeta+function+and+generalized+Lambert+transform%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=0}{[\mbox{Scopus}]} %\href{}{[\mbox{Web of Science}]}$
  • [6] G.M. Mittag-Leffler, Sur la nouvelle function Ea (x), C. R. Acad. Sci. Paris, 137 (1903), 554-558.
  • [7] A. Wiman, Uber den Fundamentalsatz in der Teorie der Funktionen Ea (x), Acta. Math., 29 (1905), 191-201.
  • [8] P. Humbert and R.P. Agarwal, la fonction de Mittag-Leffler et quelques unes de ses generalizations, Bull. Sci. Math., 77(2) (1953), 180-185.
  • [9] N. Khan, M. Aman and T. Usman, Extended Beta, hypergeometric and confluent hypergeometric functions via multi-index Mittag-Leffler function, Proc. Jang. Math. Soc., 25(1) (2022), 43-58. $\href{http://dx.doi.org/10.17777/pjms2022.25.1.43}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85130358565&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Extended+Beta%2C+hypergeometric+and+confluent+hypergeometric+functions+via+multi-index+Mittag-Leffler+function%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=0}{[\mbox{Scopus}]}$
  • [10] M. Kamarujjama, N.U. Khan and O. Khan, Extended type k-Mittag-Leffler function and its applications, Int. J. Appl. Comput. Math., 5(3) (2019), Article No. 72. $\href{https://doi.org/10.1007/s40819-019-0656-5}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85070418196&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Extended+type+k-Mittag-Leffler+function+and+its+applications%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=0}{[\mbox{Scopus}]} %\href{}{[\mbox{Web of Science}]}$
  • [11] M.A. Khan and S. Ahmed, On some properties of the generalized Mittag-Leffler function, Springer Plus, 2 (2013), Article No. 337. $\href{https://doi.org/10.1186/2193-1801-2-337}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84881253775&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+some+properties+of+the+generalized+Mittag-Leffler+function%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000209465000135}{[\mbox{Web of Science}]}$
  • [12] M.A. Khan, S. Ahmed, On some properties of fractional calculus operators associated with generalized Mittag-Leffler function, Thai J. Math., 3 (2013), 645-654. $\href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84885450498&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+some+properties+of+fractional+calculus+operators+associated+with++generalized+Mittag-Leffler+function%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000416702200011}{[\mbox{Web of Science}]}$
  • [13] N.U. Khan and M.I. Khan, Results concerning the analysis of generalized Mittag-Leffler function associated with Euler type integrals, Fasciculi Mathematici, 66 (2023), 49-59. $\href{http://dx.doi.org/10.21008/j.0044-4413.2023.0004}{[\mbox{CrossRef}]}$
  • [14] N. Khan, M.I. Khan, T. Usman, K. Nonlaopon and S. Al-Omari Unified integrals of generalized Mittag-Leffler functions and their graphical numerical investigation, Symmetry, 14 (5) (2022), 869. $\href{https://doi.org/10.3390/sym14050869}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85129752996&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Unified+integrals+of+++generalized+Mittag-Leffler+functions+and+their+graphical+numerical+investigation%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=0}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000801507300001}{[\mbox{Web of Science}]} $
  • [15] A.K. Shukla and J.C. Prajapati, On a generalized Mittag-Leffler function and its properties, J. Math. Anal. Appl., 336 (2007), 97-112. $\href{https://doi.org/10.1016/j.jmaa.2007.03.018}{[\mbox{CrossRef}]} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-34548078160&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+a+generalization+of+Mittag-Leffler+function+and+its+properties%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=2}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000249744000006}{[\mbox{Web of Science}]}$
  • [16] T.O. Salim, Some properties relating to the generalized Mittag-Leffler function, Adv. Appl. Math. Anal., 4 (2009), 21-30.
  • [17] H.M. Srivastava, Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformations, J. Nonlinear Convex Anal., 22(8) (2021), 1501-1520.
  • [18] S.P. Goyal and R.K. Laddha, On the generalized Riemann zeta functions and the generalized Lambert transform, Ganita Sandesh, 11 (2) (1997), 99-108.
  • [19] A. Erdelyi, W. Magnus, F. Oberhettinger and F.G. Tricomi, Higher Transcendental Functions, vol. I, McGraw-Hill Book Company, New York, 1953.
  • [20] A. Erdelyi, W. Magnus, F. Oberhettinger and F.G. Tricomi, Tables of Integral Transforms, vol. II, McGraw-Hill Book Company, New York, 1954.
  • [21] E.M. Wright, The asymptotic expansion of the generalized Bessel function, Proc. London Math. Soc., 38 (2) (1935), 257-270.
  • [22] A. Erdelyi, W. Magnus, F. Oberhettinger and F.G. Tricomi, Higher Transcendental Functions, vol. II, McGraw-Hill Book Company, New York, 1953.
There are 22 citations in total.

Details

Primary Language English
Subjects Mathematical Methods and Special Functions
Journal Section Articles
Authors

Virendra Kumar 0000-0003-3597-1571

Early Pub Date March 29, 2024
Publication Date March 31, 2024
Submission Date October 19, 2023
Acceptance Date December 27, 2023
Published in Issue Year 2024

Cite

APA Kumar, V. (2024). On a Generalized Mittag-Leffler Function and Fractional Integrals. Fundamental Journal of Mathematics and Applications, 7(1), 12-25. https://doi.org/10.33401/fujma.1378534
AMA Kumar V. On a Generalized Mittag-Leffler Function and Fractional Integrals. Fundam. J. Math. Appl. March 2024;7(1):12-25. doi:10.33401/fujma.1378534
Chicago Kumar, Virendra. “On a Generalized Mittag-Leffler Function and Fractional Integrals”. Fundamental Journal of Mathematics and Applications 7, no. 1 (March 2024): 12-25. https://doi.org/10.33401/fujma.1378534.
EndNote Kumar V (March 1, 2024) On a Generalized Mittag-Leffler Function and Fractional Integrals. Fundamental Journal of Mathematics and Applications 7 1 12–25.
IEEE V. Kumar, “On a Generalized Mittag-Leffler Function and Fractional Integrals”, Fundam. J. Math. Appl., vol. 7, no. 1, pp. 12–25, 2024, doi: 10.33401/fujma.1378534.
ISNAD Kumar, Virendra. “On a Generalized Mittag-Leffler Function and Fractional Integrals”. Fundamental Journal of Mathematics and Applications 7/1 (March 2024), 12-25. https://doi.org/10.33401/fujma.1378534.
JAMA Kumar V. On a Generalized Mittag-Leffler Function and Fractional Integrals. Fundam. J. Math. Appl. 2024;7:12–25.
MLA Kumar, Virendra. “On a Generalized Mittag-Leffler Function and Fractional Integrals”. Fundamental Journal of Mathematics and Applications, vol. 7, no. 1, 2024, pp. 12-25, doi:10.33401/fujma.1378534.
Vancouver Kumar V. On a Generalized Mittag-Leffler Function and Fractional Integrals. Fundam. J. Math. Appl. 2024;7(1):12-25.

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a