Research Article
BibTex RIS Cite
Year 2024, , 158 - 168, 30.09.2024
https://doi.org/10.33401/fujma.1404456

Abstract

References

  • [1] J. Ercolano, Matrix generators of Pell sequences, Fibonacci Quart., 17(1) (1979), 71-77. $ \href{https://www.fq.math.ca/Scanned/17-1/ercolano.pdf}{\mbox{[Web]}} $
  • [2] A.F. Horadam, Pell identities, Fibonacci Quart., 9(3) (1971), 245-252. $\href{https://www.fq.math.ca/Scanned/9-3/horadam-a.pdf}{\mbox{[Web]}} $
  • [3] T. Koshy, Pell and Pell-Lucas numbers with applications, New York: Springer, (2014). $ \href{https://link.springer.com/book/10.1007/978-1-4614-8489-9}{\mbox{[Web]}} $
  • [4] M. Bicknell, A primer on the Pell sequence and related sequences, Fibonacci Quart., 13(4) (1975), 345-349. $\href{https://www.fq.math.ca/Scanned/13-4/bicknell.pdf}{\mbox{[Web]}} $
  • [5] R. Brawer and M. Pirovino, The Linear Algebra of the Pascal Matrix, Linear Algebra Appl., 174 (1992), 13-23. $\href{https://doi.org/10.1016/0024-3795(92)90038-C}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-38249007937&origin=resultslist&sort=plf-f&src=s&sid=26b6f52262b7a43f206286e14ce03f5c&sot=b&sdt=b&s=%28TITLE-ABS-KEY%28the+AND+linear+AND+algebra+AND+of+AND+the+AND+pascal+AND+matrix%29+AND+AUTH%28brawer%29%29&sl=54&sessionSearchId=26b6f52262b7a43f206286e14ce03f5c&relpos=0 } {\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:A1992JK79500002}{\mbox{[Web of Science]}} $
  • [6] G.Y. Lee, J.S. Kim and S.G. Lee, Factorizations and eigenvalues of Fibonacci and symmetric Fibonacci matrices, Fibonacci Quart., 40(3) (2002), 203-211. $ \href{http://dx.doi.org/10.1080/00150517.2002.12428645}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-0042910454&origin=resultslist&sort=plf-f&src=s&sid=9cb70582b33529f30cd2700d446ff40f&sot=b&sdt=b&s=%28TITLE-ABS-KEY%28Factorizations+and+eigenvalues+of+Fibonacci+and+symmetric+Fibonacci+matrices%29+AND+AUTH%28lee%29%29&sl=60&sessionSearchId=9cb70582b33529f30cd2700d446ff40f&relpos=0 } {\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000176714400002}{\mbox{[Web of Science]}} $
  • [7] G.Y. Lee and J.S. Kim, The linear algebra of the k-Fibonacci matrix, Linear Algebra Appl., 373 (2003), 75-87. $ \href{https://doi.org/10.1016/S0024-3795(02)00596-7}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-0141569552&origin=resultslist&sort=plf-f&src=s&sid=d681b03ab35358a7b53d35e8d48c6bee&sot=b&sdt=b&s=TITLE-ABS-KEY%28The+linear+algebra+of+the+k-Fibonacci+matrix%29&sl=59&sessionSearchId=d681b03ab35358a7b53d35e8d48c6bee&relpos=4 } {\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000185778400007}{\mbox{[Web of Science]}} $
  • [8] Z. Zhang and X.Wang, A factorization of the symmetric Pascal matrix involving the Fibonacci matrix, Discrete Appl. Math., 155(17) (2007), 2371-2376. $ \href{https://doi.org/10.1016/j.dam.2007.06.024}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-34648831937&origin=resultslist&sort=plf-f&src=s&sid=8e1ca21e5472053740f1372ccc332c3a&sot=b&sdt=b&s=%28TITLE-ABS-KEY%28A+factorization+of+the+symmetric+Pascal+matrix+involving+the+Fibonacci+matrix%29+AND+AUTH%28zhang%29%29&sl=55&sessionSearchId=8e1ca21e5472053740f1372ccc332c3a&relpos=0 } {\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000250823100019}{\mbox{[Web of Science]}}$
  • [9] Z. Zhang, The linear algebra of the generalized Pascal matrix, Linear Algebra Appl., 250 (1997), 51-60. $\href{https://doi.org/10.1016/0024-3795(95)00452-1}{\mbox{[CrossRef]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:A1997VX45000005}{\mbox{[Web of Science]}} $
  • [10] N. Irmak and C. Köme, Linear algebra of the Lucas matrix, Hacettepe J. Math. Stat., 50(2) (2021), 549-558. $ \href{https://doi.org/10.15672/hujms.746184}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85105440972&origin=resultslist&sort=plf-f&src=s&sid=77c9f7d9ec0d3b77c3e5d305a036b280&sot=b&sdt=b&s=TITLE-ABS-KEY%28Linear+algebra+of+the+Lucas+matrix%29&sl=69&sessionSearchId=77c9f7d9ec0d3b77c3e5d305a036b280&relpos=5 } {\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000640069900022}{\mbox{[Web of Science]}} $
  • [11] C. Köme, Cholesky factorization of the generalized symmetric k-Fibonacci matrix, Gazi Univ. J. Sci., 35(4) (2022), 1585-1595. $\href{https://doi.org/10.35378/gujs.838411}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85140066069&origin=resultslist&sort=plf-f&src=s&sid=ded2a8a39752061915044770426d360b&sot=b&sdt=b&s=TITLE-ABS-KEY%28Cholesky+factorization+of+the+generalized+symmetric%29&sl=85&sessionSearchId=ded2a8a39752061915044770426d360b&relpos=1 } {\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000904870300024}{\mbox{[Web of Science]}} $
  • [12] S. Vasanthi and B. Sivakumar, Jacobsthal matrices and their properties, Indian J. Sci. Tech., 15(5) (2022), 207-215. $\href{https://doi.org/10.17485/IJST/v15i5.1948}{\mbox{[CrossRef]}} $
  • [13] E. Kılıç and D. Taşçı, The linear algebra of the Pell matrix, Bol. Soc. Mat. Mex., 11(3) (2005), 163–174. $ \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-33745641909&origin=resultslist&sort=plf-f&src=s&sid=8b018631a936a5f87927f918d6583095&sot=b&sdt=b&s=TITLE-ABS-KEY%28The+linear+algebra+of+the+Pell+matrix%29&sl=52&sessionSearchId=8b018631a936a5f87927f918d6583095&relpos=6 } {\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000236135900001}{\mbox{[Web of Science]}} $
  • [14] A.W. Marshall, I. Olkin and B.C. Arnold, Inequalities: Theory of Majorization and Its Applications, Springer Series in Statistics, (2011). $ \href{https://doi.org/10.1007/978-0-387-68276-1}{\mbox{[CrossRef]}} $
  • [15] D.S. Mitrinovic and P.M. Vasic, Analytic Inequalities (Vol. 1)., Berlin: Springer, (1970).$ \href{https://doi.org/10.1007/978-3-642-99970-3}{\mbox{[CrossRef]}} $
  • [16] G.H. Hardy, J. E. Littlewood and G. Polya, Some simple inequalities satisfied by convex functions, Messenger Math., 58 (1929), 145–152.$ $
  • [17] A.F. Horadam and J. M. Mahon, Pell and Pell-Lucas polynomials, Fibonacci Quart., 23(1) (1985), 7-20. $ \href{https://www.webofscience.com/wos/woscc/full-record/WOS:A1985AED6800002}{\mbox{[Web of Science]}} $

The Linear Algebra of the Pell-Lucas Matrix

Year 2024, , 158 - 168, 30.09.2024
https://doi.org/10.33401/fujma.1404456

Abstract

In this paper, we introduce the Pell-Lucas and the symmetric Pell-Lucas matrices. The study delves into the linear algebra aspects of these matrices, analyzing their mathematical properties and relationships. We construct decompositions for both the Pell-Lucas matrix and its inverse matrix. We present the Cholesky factorization of the symmetric Pell-Lucas matrices. Furthermore, we derive some valuable identities and bounds for the eigenvalues of these symmetric matrices through the application of majorization notation.

References

  • [1] J. Ercolano, Matrix generators of Pell sequences, Fibonacci Quart., 17(1) (1979), 71-77. $ \href{https://www.fq.math.ca/Scanned/17-1/ercolano.pdf}{\mbox{[Web]}} $
  • [2] A.F. Horadam, Pell identities, Fibonacci Quart., 9(3) (1971), 245-252. $\href{https://www.fq.math.ca/Scanned/9-3/horadam-a.pdf}{\mbox{[Web]}} $
  • [3] T. Koshy, Pell and Pell-Lucas numbers with applications, New York: Springer, (2014). $ \href{https://link.springer.com/book/10.1007/978-1-4614-8489-9}{\mbox{[Web]}} $
  • [4] M. Bicknell, A primer on the Pell sequence and related sequences, Fibonacci Quart., 13(4) (1975), 345-349. $\href{https://www.fq.math.ca/Scanned/13-4/bicknell.pdf}{\mbox{[Web]}} $
  • [5] R. Brawer and M. Pirovino, The Linear Algebra of the Pascal Matrix, Linear Algebra Appl., 174 (1992), 13-23. $\href{https://doi.org/10.1016/0024-3795(92)90038-C}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-38249007937&origin=resultslist&sort=plf-f&src=s&sid=26b6f52262b7a43f206286e14ce03f5c&sot=b&sdt=b&s=%28TITLE-ABS-KEY%28the+AND+linear+AND+algebra+AND+of+AND+the+AND+pascal+AND+matrix%29+AND+AUTH%28brawer%29%29&sl=54&sessionSearchId=26b6f52262b7a43f206286e14ce03f5c&relpos=0 } {\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:A1992JK79500002}{\mbox{[Web of Science]}} $
  • [6] G.Y. Lee, J.S. Kim and S.G. Lee, Factorizations and eigenvalues of Fibonacci and symmetric Fibonacci matrices, Fibonacci Quart., 40(3) (2002), 203-211. $ \href{http://dx.doi.org/10.1080/00150517.2002.12428645}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-0042910454&origin=resultslist&sort=plf-f&src=s&sid=9cb70582b33529f30cd2700d446ff40f&sot=b&sdt=b&s=%28TITLE-ABS-KEY%28Factorizations+and+eigenvalues+of+Fibonacci+and+symmetric+Fibonacci+matrices%29+AND+AUTH%28lee%29%29&sl=60&sessionSearchId=9cb70582b33529f30cd2700d446ff40f&relpos=0 } {\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000176714400002}{\mbox{[Web of Science]}} $
  • [7] G.Y. Lee and J.S. Kim, The linear algebra of the k-Fibonacci matrix, Linear Algebra Appl., 373 (2003), 75-87. $ \href{https://doi.org/10.1016/S0024-3795(02)00596-7}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-0141569552&origin=resultslist&sort=plf-f&src=s&sid=d681b03ab35358a7b53d35e8d48c6bee&sot=b&sdt=b&s=TITLE-ABS-KEY%28The+linear+algebra+of+the+k-Fibonacci+matrix%29&sl=59&sessionSearchId=d681b03ab35358a7b53d35e8d48c6bee&relpos=4 } {\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000185778400007}{\mbox{[Web of Science]}} $
  • [8] Z. Zhang and X.Wang, A factorization of the symmetric Pascal matrix involving the Fibonacci matrix, Discrete Appl. Math., 155(17) (2007), 2371-2376. $ \href{https://doi.org/10.1016/j.dam.2007.06.024}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-34648831937&origin=resultslist&sort=plf-f&src=s&sid=8e1ca21e5472053740f1372ccc332c3a&sot=b&sdt=b&s=%28TITLE-ABS-KEY%28A+factorization+of+the+symmetric+Pascal+matrix+involving+the+Fibonacci+matrix%29+AND+AUTH%28zhang%29%29&sl=55&sessionSearchId=8e1ca21e5472053740f1372ccc332c3a&relpos=0 } {\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000250823100019}{\mbox{[Web of Science]}}$
  • [9] Z. Zhang, The linear algebra of the generalized Pascal matrix, Linear Algebra Appl., 250 (1997), 51-60. $\href{https://doi.org/10.1016/0024-3795(95)00452-1}{\mbox{[CrossRef]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:A1997VX45000005}{\mbox{[Web of Science]}} $
  • [10] N. Irmak and C. Köme, Linear algebra of the Lucas matrix, Hacettepe J. Math. Stat., 50(2) (2021), 549-558. $ \href{https://doi.org/10.15672/hujms.746184}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85105440972&origin=resultslist&sort=plf-f&src=s&sid=77c9f7d9ec0d3b77c3e5d305a036b280&sot=b&sdt=b&s=TITLE-ABS-KEY%28Linear+algebra+of+the+Lucas+matrix%29&sl=69&sessionSearchId=77c9f7d9ec0d3b77c3e5d305a036b280&relpos=5 } {\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000640069900022}{\mbox{[Web of Science]}} $
  • [11] C. Köme, Cholesky factorization of the generalized symmetric k-Fibonacci matrix, Gazi Univ. J. Sci., 35(4) (2022), 1585-1595. $\href{https://doi.org/10.35378/gujs.838411}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85140066069&origin=resultslist&sort=plf-f&src=s&sid=ded2a8a39752061915044770426d360b&sot=b&sdt=b&s=TITLE-ABS-KEY%28Cholesky+factorization+of+the+generalized+symmetric%29&sl=85&sessionSearchId=ded2a8a39752061915044770426d360b&relpos=1 } {\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000904870300024}{\mbox{[Web of Science]}} $
  • [12] S. Vasanthi and B. Sivakumar, Jacobsthal matrices and their properties, Indian J. Sci. Tech., 15(5) (2022), 207-215. $\href{https://doi.org/10.17485/IJST/v15i5.1948}{\mbox{[CrossRef]}} $
  • [13] E. Kılıç and D. Taşçı, The linear algebra of the Pell matrix, Bol. Soc. Mat. Mex., 11(3) (2005), 163–174. $ \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-33745641909&origin=resultslist&sort=plf-f&src=s&sid=8b018631a936a5f87927f918d6583095&sot=b&sdt=b&s=TITLE-ABS-KEY%28The+linear+algebra+of+the+Pell+matrix%29&sl=52&sessionSearchId=8b018631a936a5f87927f918d6583095&relpos=6 } {\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000236135900001}{\mbox{[Web of Science]}} $
  • [14] A.W. Marshall, I. Olkin and B.C. Arnold, Inequalities: Theory of Majorization and Its Applications, Springer Series in Statistics, (2011). $ \href{https://doi.org/10.1007/978-0-387-68276-1}{\mbox{[CrossRef]}} $
  • [15] D.S. Mitrinovic and P.M. Vasic, Analytic Inequalities (Vol. 1)., Berlin: Springer, (1970).$ \href{https://doi.org/10.1007/978-3-642-99970-3}{\mbox{[CrossRef]}} $
  • [16] G.H. Hardy, J. E. Littlewood and G. Polya, Some simple inequalities satisfied by convex functions, Messenger Math., 58 (1929), 145–152.$ $
  • [17] A.F. Horadam and J. M. Mahon, Pell and Pell-Lucas polynomials, Fibonacci Quart., 23(1) (1985), 7-20. $ \href{https://www.webofscience.com/wos/woscc/full-record/WOS:A1985AED6800002}{\mbox{[Web of Science]}} $
There are 17 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Articles
Authors

Hayrullah Özimamoğlu 0000-0001-7844-1840

Ahmet Kaya 0000-0001-5109-8130

Early Pub Date September 30, 2024
Publication Date September 30, 2024
Submission Date December 13, 2023
Acceptance Date September 2, 2024
Published in Issue Year 2024

Cite

APA Özimamoğlu, H., & Kaya, A. (2024). The Linear Algebra of the Pell-Lucas Matrix. Fundamental Journal of Mathematics and Applications, 7(3), 158-168. https://doi.org/10.33401/fujma.1404456
AMA Özimamoğlu H, Kaya A. The Linear Algebra of the Pell-Lucas Matrix. Fundam. J. Math. Appl. September 2024;7(3):158-168. doi:10.33401/fujma.1404456
Chicago Özimamoğlu, Hayrullah, and Ahmet Kaya. “The Linear Algebra of the Pell-Lucas Matrix”. Fundamental Journal of Mathematics and Applications 7, no. 3 (September 2024): 158-68. https://doi.org/10.33401/fujma.1404456.
EndNote Özimamoğlu H, Kaya A (September 1, 2024) The Linear Algebra of the Pell-Lucas Matrix. Fundamental Journal of Mathematics and Applications 7 3 158–168.
IEEE H. Özimamoğlu and A. Kaya, “The Linear Algebra of the Pell-Lucas Matrix”, Fundam. J. Math. Appl., vol. 7, no. 3, pp. 158–168, 2024, doi: 10.33401/fujma.1404456.
ISNAD Özimamoğlu, Hayrullah - Kaya, Ahmet. “The Linear Algebra of the Pell-Lucas Matrix”. Fundamental Journal of Mathematics and Applications 7/3 (September 2024), 158-168. https://doi.org/10.33401/fujma.1404456.
JAMA Özimamoğlu H, Kaya A. The Linear Algebra of the Pell-Lucas Matrix. Fundam. J. Math. Appl. 2024;7:158–168.
MLA Özimamoğlu, Hayrullah and Ahmet Kaya. “The Linear Algebra of the Pell-Lucas Matrix”. Fundamental Journal of Mathematics and Applications, vol. 7, no. 3, 2024, pp. 158-6, doi:10.33401/fujma.1404456.
Vancouver Özimamoğlu H, Kaya A. The Linear Algebra of the Pell-Lucas Matrix. Fundam. J. Math. Appl. 2024;7(3):158-6.

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a