Research Article
BibTex RIS Cite

Year 2025, Volume: 8 Issue: 4, 187 - 202, 30.12.2025
https://doi.org/10.33401/fujma.1538622

Abstract

References

  • [1] E. Abboud, Minimal sum of powered distances from the sides of a triangle, arXiv:1707.01853 [math.OC], 7pages. $ \href{https://doi.org/10.48550/arXiv.1707.01853}{\mbox{[CrossRef]}} $
  • [2] C. Kimberling, Trilinear distance inequalities for the symmedian point, the centroid, and other triangle centers, Forum Geom., 10 (2010), 135-139.
  • [3] J. Casey, A Treatise on Spherical Trigonometry, and Its Application to Geodesy and Astronomy, With Numerous Examples, Dublin: Hodges, Figgis, & Co., Grafton-St. London: Longmans, Green, & Co., (1889). $ \href{https://www.survivorlibrary.com/library/a_treatise_on_spherical_trigonometry_and_its_application_to_geodesy_and_astronomy_1889.pdf}{\mbox{[Web]}} $
  • [4] A.A. Ungar, Analytic Hyperbolic Geometry in N Dimensions, An Introduction, CRC Press, (2015). $ \href{https://doi.org/10.1201/b17858}{\mbox{[CrossRef]}} $
  • [5] K. Satˆo, Two centroids of spherical or hyperbolic triangle: the point trisecting the area and the concurrent point of arcs bisecting the area, Hiroshima Math. J., to appear.
  • [6] D.V. Alekseevskij, E.B. Vinberg and A.S. Solodovnikov, Geometry of Spaces of Constant Curvature, In: Vinberg, E.B. (eds) Geometry II. Encyclopaedia of Mathematical Sciences, Springer-Verlag, 29 (1993). $ \href{https://doi.org/10.1007/978-3-662-02901-5_1}{\mbox{[CrossRef]}} $
  • [7] K. Satˆo, Incenters, circumcenters, and orthocenters of simplices of Euclidean spaces, spheres, and hyperbolic spaces: The interiorness and their polarity, Proceedings of NACA-ICOTA2019 II (2019), 213-227. $\href{http://www.ybook.co.jp/book/NACA-ICOTA2019/naca-icota-II-p213/HTML5/}{\mbox{[Web]}} $

Maximizers and Minimizers of Functions Defined by the Distances From the Edges of Spherical and Hyperbolic Triangles

Year 2025, Volume: 8 Issue: 4, 187 - 202, 30.12.2025
https://doi.org/10.33401/fujma.1538622

Abstract

In this paper, we investigate the minimizers and maximizers of functions defined by the sum of the distances from the edges of a given triangle by extending it to the setting of the sphere and the hyperbolic plane. We also study the asymptotic behavior of these points as the curvature of the space to zero.

Supporting Institution

JSPS KAKENHI JP21K03316

References

  • [1] E. Abboud, Minimal sum of powered distances from the sides of a triangle, arXiv:1707.01853 [math.OC], 7pages. $ \href{https://doi.org/10.48550/arXiv.1707.01853}{\mbox{[CrossRef]}} $
  • [2] C. Kimberling, Trilinear distance inequalities for the symmedian point, the centroid, and other triangle centers, Forum Geom., 10 (2010), 135-139.
  • [3] J. Casey, A Treatise on Spherical Trigonometry, and Its Application to Geodesy and Astronomy, With Numerous Examples, Dublin: Hodges, Figgis, & Co., Grafton-St. London: Longmans, Green, & Co., (1889). $ \href{https://www.survivorlibrary.com/library/a_treatise_on_spherical_trigonometry_and_its_application_to_geodesy_and_astronomy_1889.pdf}{\mbox{[Web]}} $
  • [4] A.A. Ungar, Analytic Hyperbolic Geometry in N Dimensions, An Introduction, CRC Press, (2015). $ \href{https://doi.org/10.1201/b17858}{\mbox{[CrossRef]}} $
  • [5] K. Satˆo, Two centroids of spherical or hyperbolic triangle: the point trisecting the area and the concurrent point of arcs bisecting the area, Hiroshima Math. J., to appear.
  • [6] D.V. Alekseevskij, E.B. Vinberg and A.S. Solodovnikov, Geometry of Spaces of Constant Curvature, In: Vinberg, E.B. (eds) Geometry II. Encyclopaedia of Mathematical Sciences, Springer-Verlag, 29 (1993). $ \href{https://doi.org/10.1007/978-3-662-02901-5_1}{\mbox{[CrossRef]}} $
  • [7] K. Satˆo, Incenters, circumcenters, and orthocenters of simplices of Euclidean spaces, spheres, and hyperbolic spaces: The interiorness and their polarity, Proceedings of NACA-ICOTA2019 II (2019), 213-227. $\href{http://www.ybook.co.jp/book/NACA-ICOTA2019/naca-icota-II-p213/HTML5/}{\mbox{[Web]}} $
There are 7 citations in total.

Details

Primary Language English
Subjects Pure Mathematics (Other)
Journal Section Research Article
Authors

Yasunori Kimura 0000-0003-1861-0432

Kenzi Satô 0009-0008-5868-8182

Submission Date August 26, 2024
Acceptance Date October 9, 2025
Publication Date December 30, 2025
Published in Issue Year 2025 Volume: 8 Issue: 4

Cite

APA Kimura, Y., & Satô, K. (2025). Maximizers and Minimizers of Functions Defined by the Distances From the Edges of Spherical and Hyperbolic Triangles. Fundamental Journal of Mathematics and Applications, 8(4), 187-202. https://doi.org/10.33401/fujma.1538622
AMA Kimura Y, Satô K. Maximizers and Minimizers of Functions Defined by the Distances From the Edges of Spherical and Hyperbolic Triangles. Fundam. J. Math. Appl. December 2025;8(4):187-202. doi:10.33401/fujma.1538622
Chicago Kimura, Yasunori, and Kenzi Satô. “Maximizers and Minimizers of Functions Defined by the Distances From the Edges of Spherical and Hyperbolic Triangles”. Fundamental Journal of Mathematics and Applications 8, no. 4 (December 2025): 187-202. https://doi.org/10.33401/fujma.1538622.
EndNote Kimura Y, Satô K (December 1, 2025) Maximizers and Minimizers of Functions Defined by the Distances From the Edges of Spherical and Hyperbolic Triangles. Fundamental Journal of Mathematics and Applications 8 4 187–202.
IEEE Y. Kimura and K. Satô, “Maximizers and Minimizers of Functions Defined by the Distances From the Edges of Spherical and Hyperbolic Triangles”, Fundam. J. Math. Appl., vol. 8, no. 4, pp. 187–202, 2025, doi: 10.33401/fujma.1538622.
ISNAD Kimura, Yasunori - Satô, Kenzi. “Maximizers and Minimizers of Functions Defined by the Distances From the Edges of Spherical and Hyperbolic Triangles”. Fundamental Journal of Mathematics and Applications 8/4 (December2025), 187-202. https://doi.org/10.33401/fujma.1538622.
JAMA Kimura Y, Satô K. Maximizers and Minimizers of Functions Defined by the Distances From the Edges of Spherical and Hyperbolic Triangles. Fundam. J. Math. Appl. 2025;8:187–202.
MLA Kimura, Yasunori and Kenzi Satô. “Maximizers and Minimizers of Functions Defined by the Distances From the Edges of Spherical and Hyperbolic Triangles”. Fundamental Journal of Mathematics and Applications, vol. 8, no. 4, 2025, pp. 187-02, doi:10.33401/fujma.1538622.
Vancouver Kimura Y, Satô K. Maximizers and Minimizers of Functions Defined by the Distances From the Edges of Spherical and Hyperbolic Triangles. Fundam. J. Math. Appl. 2025;8(4):187-202.

35253       35256

35258

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a

28893   28892   28894   28895   28896   28897