Research Article
BibTex RIS Cite

Year 2025, Volume: 8 Issue: 2, 55 - 64, 30.06.2025
https://doi.org/10.33401/fujma.1630459

Abstract

References

  • [1] M. Açıkgöz and U. Duran, Unified degenerate central Bell polynomials, J. Math. Anal., 11(2) (2020), 18-33. $\href{https://www.\mbox{Scopus}.com/pages/publications/85091392267}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000518398800002}{[\mbox{Web of Science}]} $
  • [2] L. Chen, T. Kim, D.S. Kim, H. Lee and S.H. Lee, Probabilistic degenerate central Bell polynomials. Math. Comput.Model. Dyn. Syst., 30(1) (2024), 523-542. $ \href{https://doi.org/10.1080/13873954.2024.2358899}{[\mbox{CrossRef}]} \href{https://www.\mbox{Scopus}.com/pages/publications/85197370386}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:001260615300001}{[\mbox{Web of Science}]} $
  • [3] U. Duran and M. Açıkgöz, On Hermite-Bell based Stirling numbers of the first and second kinds, 8. International Blacksea Coastline Countries Scientific Conference, August 29-30, (2022), Sofia, Bulgaria, 336-344.
  • [4] U. Duran, S. Aracı and M. Açıkgöz, Bell-based Bernoulli polynomials with applications, Axioms, 10 (2021), 29. $ \href{https://doi.org/10.3390/axioms10010029}{[\mbox{CrossRef}]} \href{https://www.\mbox{Scopus}.com/pages/publications/85102759996}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000633025500001}{[\mbox{Web of Science}]} $
  • [5] U. Duran, Degenerate Bell-based Euler polynomials, SILK ROAD 2. International Scientific Research Congress, September 26-27, (2023), Igdır University, Igdir, Türkiye, 1551-1562.
  • [6] U. Duran and M. Açıkgöz, On Hermite-Bell based Euler polynomials of order b, VI-International European Conference on Interdisciplinary Scientific Research, August 26-27, (2022), Bucharest, Romania, 524-532.
  • [7] G.W. Jang and T. Kim, A note on type 2 degenerate Euler and Bernoulli polynomials, Adv. Stud. Contemp. Math., 29 (2019), 147-159. $ \href{http://dx.doi.org/10.17777/ascm2019.29.1.147}{[\mbox{CrossRef}]} \href{https://www.\mbox{Scopus}.com/pages/publications/85065926074}{[\mbox{Scopus}]} $
  • [8] W.A. Khan, G. Muhiuddin, A. Muhyi and D. Al-Kadi, Analytical properties of type 2 degenerate poly-Bernoulli polynomials associated with their applications, Adv. Differ. Equ., 2021 (2021), 420. $ \href{https://doi.org/10.1186/s13662-021-03575-7}{[\mbox{CrossRef}]} \href{https://www.\mbox{Scopus}.com/pages/publications/85115191237}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000696832600002}{[\mbox{Web of Science}]} $
  • [9] N. Khan and S. Husain, Analysis of Bell based Euler polynomials and their application, Int. J. Appl. Comput. Math., 7 (2021), 195. $ \href{https://link.springer.com/article/10.1007%2Fs40819-021-01127-x}{[\mbox{CrossRef}]} \href{https://www.\mbox{Scopus}.com/pages/publications/85114696458}{[\mbox{Scopus}]} $
  • [10] D.S. Kim, H.Y. Kim, S.-S. Pyo and T. Kim Some identitiesof special numbers and polynomials arising from p-adic integrals on Zp, Adv. Differ. Equ., 2019 (2019), 190. $\href{https://doi.org/10.48550/arXiv.1903.04136 }{[\mbox{CrossRef}]} \href{https://www.\mbox{Scopus}.com/pages/publications/85065925483}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000468292000004}{[\mbox{Web of Science}]} $
  • [11] T. Kim and D.S. Kim, Degenerate central Bell numbers and polynomials, Rev. Real Acad. Cienc. Exactas Fis. Nat. - A: Mat., 113 (2019), 2507-2513. $ \href{https://doi.org/10.1007/s13398-019-00637-0}{[\mbox{CrossRef}]} \href{https://www.\mbox{Scopus}.com/pages/publications/85065472140}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000469507800054}{[\mbox{Web of Science}]} $
  • [12] T. Kim and D.S. Kim, A note on central Bell numbers and polynomials, Russ. J. Math. Phys., 27(1) (2020), 76-81. $ \href{https://doi.org/10.1134/S1061920820010070}{[\mbox{CrossRef}]} \href{https://www.\mbox{Scopus}.com/pages/publications/85066154852}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000520707200007}{[\mbox{Web of Science}]}$
  • [13] D.S. Kim, H.Y. Kim, D. Kim and T. Kim, Identities of symmetry for type 2 Bernoulli and Euler polynomials, Symmetry, 11 (2019), 613. $ \href{https://doi.org/10.3390/sym11050613}{[\mbox{CrossRef}]} \href{https://www.\mbox{Scopus}.com/pages/publications/85066321625}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000470990900016}{[\mbox{Web of Science}]} $
  • [14] D.S. Kim, D.V. Dolgy, D. Kim, T. Kim, Some identities on r-central factorial numbers and r-central Bell polynomials., Adv. Differ. Equ., 2019 (2019), 245. $ \href{https://doi.org/10.1186/s13662-019-2195-0}{[\mbox{CrossRef}]} \href{https://www.\mbox{Scopus}.com/pages/publications/85067943921}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000472471100003}{[\mbox{Web of Science}]}$
  • [15] H.K. Kim and T. Kim, Poly-central factorial sequences and poly-central-Bell polynomials., Adv. Differ. Equ., 2021 (2021), 1. $\href{https://doi.org/10.1186/s13662-021-03663-8}{[\mbox{CrossRef}]} \href{https://www.\mbox{Scopus}.com/pages/publications/85119652657}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000721593000003}{[\mbox{Web of Science}]} $
  • [16] Y. S¸ims¸ek, Some new families of special polynomials and numbers associated with finite operators, Symmetry, 12 (2020), 237. $ \href{https://doi.org/10.3390/sym12020237}{[\mbox{CrossRef}]} \href{https://www.\mbox{Scopus}.com/pages/publications/85080881111}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000521147600067}{[\mbox{Web of Science}]} $
  • [17] M.S. Alatawi, W.A. Khan and U. Duran, Symmetric identities involving the extended degenerate central Fubini polynomials arising from the fermionic p-adic integral on Zp, Axioms, 13(7) (2024), 421. $ \href{https://doi.org/10.3390/axioms13070421}{[\mbox{CrossRef}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:001278120700001}{[\mbox{Web of Science}]} $
  • [18] P.L. Butzer, K. Schmidt, E. Stark and E. Vogt, Central factorial numbers; their main properties and some applications, Numer. Func. Anal. Opt., 10(5-6) (1989), 419-488. $ \href{https://doi.org/10.1080/01630568908816313}{[\mbox{CrossRef}]} \href{https://www.\mbox{Scopus}.com/pages/publications/78149456634}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:A1989AF42900001}{[\mbox{Web of Science}]} $
  • [19] T. Kim and D.S. Kim, A note on type 2 Changhee and Daehee polynomials, Rev. Real Acad. Cienc. Exactas Fis. Nat. - A: Mat., 113 (2019), 2763–2771. $ \href{https://doi.org/10.1007/s13398-019-00656-x}{[\mbox{CrossRef}]} \href{https://www.\mbox{Scopus}.com/pages/publications/85065130351}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000469507800070}{[\mbox{Web of Science}]} $
  • [20] T. Kim, A note on central factorial numbers, Proc. Jangjeon Math. Soc., 21(4) (2018), 575-588. $ \href{http://dx.doi.org/10.17777/pjms2018.21.4.575}{[\mbox{CrossRef}]} $
  • [21] D.S. Kim, J. Kwon, D.V. Dolgy, T. Kim, On central Fubini polynomials associated with central factorial numbers of the second kind. Proc. Jangjeon Math. Soc. 21(4) (2018), 589-598. $ \href{http://dx.doi.org/10.17777/pjms2018.21.4.589}{[\mbox{CrossRef}]} $
  • [22] T. Kim, D.S. Kim, G.W. Jang and J. Kwon, Extended central factorial polynomials of the second kind, Adv. Differ. Equ, 2019, (2019), 1. $\href{https://doi.org/10.1186/s13662-019-1963-1}{[\mbox{CrossRef}]} \href{https://www.\mbox{Scopus}.com/pages/publications/85060634953}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000456512000001 nb }{[\mbox{Web of Science}]} $
  • [23] T. Komatsu, On s-Stirling transform and poly-Cauchy numbers of the second kind with level 2, Aequ. Math., 97 (2022), 31-61. $ \href{https://doi.org/10.1007/s00010-022-00931-0}{[\mbox{CrossRef}]} \href{https://www.\mbox{Scopus}.com/pages/publications/85143708751}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000897937000001}{[\mbox{Web of Science}]} $
  • [24] T. Komatsu, J.L. Ramirez and D. Villamizar, A combinatorial approach to the generalized central factorial numbers, Mediterr. J. Math., 18 (2021), 192. $\href{https://doi.org/10.1007/s00009-021-01830-5}{[\mbox{CrossRef}]} \href{https://www.\mbox{Scopus}.com/pages/publications/85108825949}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000686695000002}{[\mbox{Web of Science}]} $
  • [25] F.A. Shiha, The r-central factorial numbers with even indices, Adv. Differ Equ., 2020 (2020), 1. $ \href{https://doi.org/10.1186/s13662-020-02763-1}{[\mbox{CrossRef}]} \href{https://www.\mbox{Scopus}.com/pages/publications/85086585945}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000540771100001}{[\mbox{Web of Science}]} $

Central Bell-Based Type 2 Bernoulli Polynomials of Order $\beta $

Year 2025, Volume: 8 Issue: 2, 55 - 64, 30.06.2025
https://doi.org/10.33401/fujma.1630459

Abstract

In recent years, Hermite-based special polynomials, Bell-based special polynomials, and Laguerre-based special polynomials have been explored, and numerous properties and applications have been investigated by many mathematicians. Here, we consider the central Bell-based type 2 Bernoulli polynomials of order $\beta $ that extend the concepts of central Bell polynomials and type 2 Bernoulli polynomials. Then, we derive diverse formulas, relations, and identities, such as some summation formulas, an addition formula, two partial derivative properties, a recurrence relation, two explicit formulas, and two summation formulas covering central Bell polynomials and central factorial numbers of the second kind. Moreover, we investigate an implicit summation formula for central Bell-based type 2 Bernoulli polynomials of order $\beta $ utilizing some series manipulation methods. Also, we developed three useful symmetric identities for the central Bell-based type 2 Bernoulli polynomials of order $\beta $.

References

  • [1] M. Açıkgöz and U. Duran, Unified degenerate central Bell polynomials, J. Math. Anal., 11(2) (2020), 18-33. $\href{https://www.\mbox{Scopus}.com/pages/publications/85091392267}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000518398800002}{[\mbox{Web of Science}]} $
  • [2] L. Chen, T. Kim, D.S. Kim, H. Lee and S.H. Lee, Probabilistic degenerate central Bell polynomials. Math. Comput.Model. Dyn. Syst., 30(1) (2024), 523-542. $ \href{https://doi.org/10.1080/13873954.2024.2358899}{[\mbox{CrossRef}]} \href{https://www.\mbox{Scopus}.com/pages/publications/85197370386}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:001260615300001}{[\mbox{Web of Science}]} $
  • [3] U. Duran and M. Açıkgöz, On Hermite-Bell based Stirling numbers of the first and second kinds, 8. International Blacksea Coastline Countries Scientific Conference, August 29-30, (2022), Sofia, Bulgaria, 336-344.
  • [4] U. Duran, S. Aracı and M. Açıkgöz, Bell-based Bernoulli polynomials with applications, Axioms, 10 (2021), 29. $ \href{https://doi.org/10.3390/axioms10010029}{[\mbox{CrossRef}]} \href{https://www.\mbox{Scopus}.com/pages/publications/85102759996}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000633025500001}{[\mbox{Web of Science}]} $
  • [5] U. Duran, Degenerate Bell-based Euler polynomials, SILK ROAD 2. International Scientific Research Congress, September 26-27, (2023), Igdır University, Igdir, Türkiye, 1551-1562.
  • [6] U. Duran and M. Açıkgöz, On Hermite-Bell based Euler polynomials of order b, VI-International European Conference on Interdisciplinary Scientific Research, August 26-27, (2022), Bucharest, Romania, 524-532.
  • [7] G.W. Jang and T. Kim, A note on type 2 degenerate Euler and Bernoulli polynomials, Adv. Stud. Contemp. Math., 29 (2019), 147-159. $ \href{http://dx.doi.org/10.17777/ascm2019.29.1.147}{[\mbox{CrossRef}]} \href{https://www.\mbox{Scopus}.com/pages/publications/85065926074}{[\mbox{Scopus}]} $
  • [8] W.A. Khan, G. Muhiuddin, A. Muhyi and D. Al-Kadi, Analytical properties of type 2 degenerate poly-Bernoulli polynomials associated with their applications, Adv. Differ. Equ., 2021 (2021), 420. $ \href{https://doi.org/10.1186/s13662-021-03575-7}{[\mbox{CrossRef}]} \href{https://www.\mbox{Scopus}.com/pages/publications/85115191237}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000696832600002}{[\mbox{Web of Science}]} $
  • [9] N. Khan and S. Husain, Analysis of Bell based Euler polynomials and their application, Int. J. Appl. Comput. Math., 7 (2021), 195. $ \href{https://link.springer.com/article/10.1007%2Fs40819-021-01127-x}{[\mbox{CrossRef}]} \href{https://www.\mbox{Scopus}.com/pages/publications/85114696458}{[\mbox{Scopus}]} $
  • [10] D.S. Kim, H.Y. Kim, S.-S. Pyo and T. Kim Some identitiesof special numbers and polynomials arising from p-adic integrals on Zp, Adv. Differ. Equ., 2019 (2019), 190. $\href{https://doi.org/10.48550/arXiv.1903.04136 }{[\mbox{CrossRef}]} \href{https://www.\mbox{Scopus}.com/pages/publications/85065925483}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000468292000004}{[\mbox{Web of Science}]} $
  • [11] T. Kim and D.S. Kim, Degenerate central Bell numbers and polynomials, Rev. Real Acad. Cienc. Exactas Fis. Nat. - A: Mat., 113 (2019), 2507-2513. $ \href{https://doi.org/10.1007/s13398-019-00637-0}{[\mbox{CrossRef}]} \href{https://www.\mbox{Scopus}.com/pages/publications/85065472140}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000469507800054}{[\mbox{Web of Science}]} $
  • [12] T. Kim and D.S. Kim, A note on central Bell numbers and polynomials, Russ. J. Math. Phys., 27(1) (2020), 76-81. $ \href{https://doi.org/10.1134/S1061920820010070}{[\mbox{CrossRef}]} \href{https://www.\mbox{Scopus}.com/pages/publications/85066154852}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000520707200007}{[\mbox{Web of Science}]}$
  • [13] D.S. Kim, H.Y. Kim, D. Kim and T. Kim, Identities of symmetry for type 2 Bernoulli and Euler polynomials, Symmetry, 11 (2019), 613. $ \href{https://doi.org/10.3390/sym11050613}{[\mbox{CrossRef}]} \href{https://www.\mbox{Scopus}.com/pages/publications/85066321625}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000470990900016}{[\mbox{Web of Science}]} $
  • [14] D.S. Kim, D.V. Dolgy, D. Kim, T. Kim, Some identities on r-central factorial numbers and r-central Bell polynomials., Adv. Differ. Equ., 2019 (2019), 245. $ \href{https://doi.org/10.1186/s13662-019-2195-0}{[\mbox{CrossRef}]} \href{https://www.\mbox{Scopus}.com/pages/publications/85067943921}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000472471100003}{[\mbox{Web of Science}]}$
  • [15] H.K. Kim and T. Kim, Poly-central factorial sequences and poly-central-Bell polynomials., Adv. Differ. Equ., 2021 (2021), 1. $\href{https://doi.org/10.1186/s13662-021-03663-8}{[\mbox{CrossRef}]} \href{https://www.\mbox{Scopus}.com/pages/publications/85119652657}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000721593000003}{[\mbox{Web of Science}]} $
  • [16] Y. S¸ims¸ek, Some new families of special polynomials and numbers associated with finite operators, Symmetry, 12 (2020), 237. $ \href{https://doi.org/10.3390/sym12020237}{[\mbox{CrossRef}]} \href{https://www.\mbox{Scopus}.com/pages/publications/85080881111}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000521147600067}{[\mbox{Web of Science}]} $
  • [17] M.S. Alatawi, W.A. Khan and U. Duran, Symmetric identities involving the extended degenerate central Fubini polynomials arising from the fermionic p-adic integral on Zp, Axioms, 13(7) (2024), 421. $ \href{https://doi.org/10.3390/axioms13070421}{[\mbox{CrossRef}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:001278120700001}{[\mbox{Web of Science}]} $
  • [18] P.L. Butzer, K. Schmidt, E. Stark and E. Vogt, Central factorial numbers; their main properties and some applications, Numer. Func. Anal. Opt., 10(5-6) (1989), 419-488. $ \href{https://doi.org/10.1080/01630568908816313}{[\mbox{CrossRef}]} \href{https://www.\mbox{Scopus}.com/pages/publications/78149456634}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:A1989AF42900001}{[\mbox{Web of Science}]} $
  • [19] T. Kim and D.S. Kim, A note on type 2 Changhee and Daehee polynomials, Rev. Real Acad. Cienc. Exactas Fis. Nat. - A: Mat., 113 (2019), 2763–2771. $ \href{https://doi.org/10.1007/s13398-019-00656-x}{[\mbox{CrossRef}]} \href{https://www.\mbox{Scopus}.com/pages/publications/85065130351}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000469507800070}{[\mbox{Web of Science}]} $
  • [20] T. Kim, A note on central factorial numbers, Proc. Jangjeon Math. Soc., 21(4) (2018), 575-588. $ \href{http://dx.doi.org/10.17777/pjms2018.21.4.575}{[\mbox{CrossRef}]} $
  • [21] D.S. Kim, J. Kwon, D.V. Dolgy, T. Kim, On central Fubini polynomials associated with central factorial numbers of the second kind. Proc. Jangjeon Math. Soc. 21(4) (2018), 589-598. $ \href{http://dx.doi.org/10.17777/pjms2018.21.4.589}{[\mbox{CrossRef}]} $
  • [22] T. Kim, D.S. Kim, G.W. Jang and J. Kwon, Extended central factorial polynomials of the second kind, Adv. Differ. Equ, 2019, (2019), 1. $\href{https://doi.org/10.1186/s13662-019-1963-1}{[\mbox{CrossRef}]} \href{https://www.\mbox{Scopus}.com/pages/publications/85060634953}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000456512000001 nb }{[\mbox{Web of Science}]} $
  • [23] T. Komatsu, On s-Stirling transform and poly-Cauchy numbers of the second kind with level 2, Aequ. Math., 97 (2022), 31-61. $ \href{https://doi.org/10.1007/s00010-022-00931-0}{[\mbox{CrossRef}]} \href{https://www.\mbox{Scopus}.com/pages/publications/85143708751}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000897937000001}{[\mbox{Web of Science}]} $
  • [24] T. Komatsu, J.L. Ramirez and D. Villamizar, A combinatorial approach to the generalized central factorial numbers, Mediterr. J. Math., 18 (2021), 192. $\href{https://doi.org/10.1007/s00009-021-01830-5}{[\mbox{CrossRef}]} \href{https://www.\mbox{Scopus}.com/pages/publications/85108825949}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000686695000002}{[\mbox{Web of Science}]} $
  • [25] F.A. Shiha, The r-central factorial numbers with even indices, Adv. Differ Equ., 2020 (2020), 1. $ \href{https://doi.org/10.1186/s13662-020-02763-1}{[\mbox{CrossRef}]} \href{https://www.\mbox{Scopus}.com/pages/publications/85086585945}{[\mbox{Scopus}]} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000540771100001}{[\mbox{Web of Science}]} $
There are 25 citations in total.

Details

Primary Language English
Subjects Mathematical Methods and Special Functions
Journal Section Research Article
Authors

Uğur Duran 0000-0002-5717-1199

Submission Date January 31, 2025
Acceptance Date April 8, 2025
Publication Date June 30, 2025
Published in Issue Year 2025 Volume: 8 Issue: 2

Cite

APA Duran, U. (2025). Central Bell-Based Type 2 Bernoulli Polynomials of Order $\beta $. Fundamental Journal of Mathematics and Applications, 8(2), 55-64. https://doi.org/10.33401/fujma.1630459
AMA Duran U. Central Bell-Based Type 2 Bernoulli Polynomials of Order $\beta $. Fundam. J. Math. Appl. June 2025;8(2):55-64. doi:10.33401/fujma.1630459
Chicago Duran, Uğur. “Central Bell-Based Type 2 Bernoulli Polynomials of Order $\beta $”. Fundamental Journal of Mathematics and Applications 8, no. 2 (June 2025): 55-64. https://doi.org/10.33401/fujma.1630459.
EndNote Duran U (June 1, 2025) Central Bell-Based Type 2 Bernoulli Polynomials of Order $\beta $. Fundamental Journal of Mathematics and Applications 8 2 55–64.
IEEE U. Duran, “Central Bell-Based Type 2 Bernoulli Polynomials of Order $\beta $”, Fundam. J. Math. Appl., vol. 8, no. 2, pp. 55–64, 2025, doi: 10.33401/fujma.1630459.
ISNAD Duran, Uğur. “Central Bell-Based Type 2 Bernoulli Polynomials of Order $\beta $”. Fundamental Journal of Mathematics and Applications 8/2 (June2025), 55-64. https://doi.org/10.33401/fujma.1630459.
JAMA Duran U. Central Bell-Based Type 2 Bernoulli Polynomials of Order $\beta $. Fundam. J. Math. Appl. 2025;8:55–64.
MLA Duran, Uğur. “Central Bell-Based Type 2 Bernoulli Polynomials of Order $\beta $”. Fundamental Journal of Mathematics and Applications, vol. 8, no. 2, 2025, pp. 55-64, doi:10.33401/fujma.1630459.
Vancouver Duran U. Central Bell-Based Type 2 Bernoulli Polynomials of Order $\beta $. Fundam. J. Math. Appl. 2025;8(2):55-64.

35253       35256

35258

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a

28893   28892   28894   28895   28896   28897