Research Article
BibTex RIS Cite

Rational Solutions to the Boussinesq Equation

Year 2019, , 1 - 4, 17.06.2019
https://doi.org/10.33401/fujma.512333

Abstract

Rational solutions to the Boussinesq equation are constructed as a quotient of two polynomials in $x$ and $t$. For each positive integer $N$, the numerator is a polynomial of degree $N(N+1)-2$ in $x$ and $t$, while the denominator is a polynomial of degree $N(N+1)$ in $x$ and $t$. So we obtain a hierarchy of rational solutions depending on an integer $N$ called the order of the solution. We construct explicit expressions of these rational solutions for $N=1$ to $4$.

References

  • [1] J. Boussinesq, Theorie de l’intumescence appelee onde solitaire ou de translation se propageant dans un canal rectangulaire, C.R.A.S., 72 (1871), 755179.
  • [2] J. Boussinesq, Theorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblemant parielles de la surface au fond, J. Math. Pures Appl., 7 (1872), 55178.
  • [3] M. J. Ablowitz, P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, London Math. Soc. Lecture Note Ser., 149 (1991), C.U.P.
  • [4] P. Deift, C. Tomei, E. Trubowitz, Inverse scattering and the Boussinesq equation, Comm. Pure Appl. Math, 35 (1982), 567178
  • [5] M. Toda, Studies of a nonlinear lattice, Phys. Rep., 8 (1975), 1175.
  • [6] V. E. Zakharov, On stocastization of one-dimensional chains of nonlinear oscillations, Sov. Phys. JETP, 38 (1974), 108170.
  • [7] E. Infeld, G. Rowlands, Nonlinear Waves, Solitons and Chaos, C.U.P., 1990.
  • [8] R. Hirota, J. Satsuma, Non linear evolution equations generated from the B¨acklund transformation fot the Boussinesq equation, Prog. of Theor. Phys., 57 (1977), 797177.
  • [9] M. J. Ablowitz, J. Satsuma, Solitons and rational solutions of nonlinear evolution equations, J. Math. Phys., 19 (1978), 21801786.
  • [10] J. J. C. Nimmo, N. C. Freemann, A method of obtaining the N soliton solution of the Boussinesq equation in terms of a wronskian, Phys. Lett., 95(1) (1983), 417.
  • [11] V. B. Matveev, A. O. Smirnov, On the Riemann theta function of a trigonal curve and solutions of the Boussinesq anf KP equations, L.M.P., 14 (1987), 25-31.
  • [12] V. B. Matveev, M. A. Salle, Darboux transformations and solitons, Series in Nonlinear Dynamics, Springer-Verlag, Berlin, 1991.
  • [13] L. V. Bogdanov, V. E. Zakharov The Boussinesq equation revisited, Phys. D, 165 (2002), 137172.
  • [14] P. A. Clarkson, Rational solutions of the Boussinesq equation, Anal. Appl., 6 (2008), 349179.
  • [15] P. A. Clarkson, Rational solutions of the classical Boussinesq system, Nonlin. Anal. : Real World Appl., 10 (2010), 33611771
  • [16] P. A. Clarkson, E. Dowie, Rational solutions of the Boussinesq equation and applications to rogue waves, Trans. of Math. and its Appl., 1 (2017), 117.
Year 2019, , 1 - 4, 17.06.2019
https://doi.org/10.33401/fujma.512333

Abstract

References

  • [1] J. Boussinesq, Theorie de l’intumescence appelee onde solitaire ou de translation se propageant dans un canal rectangulaire, C.R.A.S., 72 (1871), 755179.
  • [2] J. Boussinesq, Theorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblemant parielles de la surface au fond, J. Math. Pures Appl., 7 (1872), 55178.
  • [3] M. J. Ablowitz, P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, London Math. Soc. Lecture Note Ser., 149 (1991), C.U.P.
  • [4] P. Deift, C. Tomei, E. Trubowitz, Inverse scattering and the Boussinesq equation, Comm. Pure Appl. Math, 35 (1982), 567178
  • [5] M. Toda, Studies of a nonlinear lattice, Phys. Rep., 8 (1975), 1175.
  • [6] V. E. Zakharov, On stocastization of one-dimensional chains of nonlinear oscillations, Sov. Phys. JETP, 38 (1974), 108170.
  • [7] E. Infeld, G. Rowlands, Nonlinear Waves, Solitons and Chaos, C.U.P., 1990.
  • [8] R. Hirota, J. Satsuma, Non linear evolution equations generated from the B¨acklund transformation fot the Boussinesq equation, Prog. of Theor. Phys., 57 (1977), 797177.
  • [9] M. J. Ablowitz, J. Satsuma, Solitons and rational solutions of nonlinear evolution equations, J. Math. Phys., 19 (1978), 21801786.
  • [10] J. J. C. Nimmo, N. C. Freemann, A method of obtaining the N soliton solution of the Boussinesq equation in terms of a wronskian, Phys. Lett., 95(1) (1983), 417.
  • [11] V. B. Matveev, A. O. Smirnov, On the Riemann theta function of a trigonal curve and solutions of the Boussinesq anf KP equations, L.M.P., 14 (1987), 25-31.
  • [12] V. B. Matveev, M. A. Salle, Darboux transformations and solitons, Series in Nonlinear Dynamics, Springer-Verlag, Berlin, 1991.
  • [13] L. V. Bogdanov, V. E. Zakharov The Boussinesq equation revisited, Phys. D, 165 (2002), 137172.
  • [14] P. A. Clarkson, Rational solutions of the Boussinesq equation, Anal. Appl., 6 (2008), 349179.
  • [15] P. A. Clarkson, Rational solutions of the classical Boussinesq system, Nonlin. Anal. : Real World Appl., 10 (2010), 33611771
  • [16] P. A. Clarkson, E. Dowie, Rational solutions of the Boussinesq equation and applications to rogue waves, Trans. of Math. and its Appl., 1 (2017), 117.
There are 16 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Pierre Gaillard 0000-0002-7073-8284

Publication Date June 17, 2019
Submission Date January 13, 2019
Acceptance Date February 17, 2019
Published in Issue Year 2019

Cite

APA Gaillard, P. (2019). Rational Solutions to the Boussinesq Equation. Fundamental Journal of Mathematics and Applications, 2(1), 1-4. https://doi.org/10.33401/fujma.512333
AMA Gaillard P. Rational Solutions to the Boussinesq Equation. Fundam. J. Math. Appl. June 2019;2(1):1-4. doi:10.33401/fujma.512333
Chicago Gaillard, Pierre. “Rational Solutions to the Boussinesq Equation”. Fundamental Journal of Mathematics and Applications 2, no. 1 (June 2019): 1-4. https://doi.org/10.33401/fujma.512333.
EndNote Gaillard P (June 1, 2019) Rational Solutions to the Boussinesq Equation. Fundamental Journal of Mathematics and Applications 2 1 1–4.
IEEE P. Gaillard, “Rational Solutions to the Boussinesq Equation”, Fundam. J. Math. Appl., vol. 2, no. 1, pp. 1–4, 2019, doi: 10.33401/fujma.512333.
ISNAD Gaillard, Pierre. “Rational Solutions to the Boussinesq Equation”. Fundamental Journal of Mathematics and Applications 2/1 (June 2019), 1-4. https://doi.org/10.33401/fujma.512333.
JAMA Gaillard P. Rational Solutions to the Boussinesq Equation. Fundam. J. Math. Appl. 2019;2:1–4.
MLA Gaillard, Pierre. “Rational Solutions to the Boussinesq Equation”. Fundamental Journal of Mathematics and Applications, vol. 2, no. 1, 2019, pp. 1-4, doi:10.33401/fujma.512333.
Vancouver Gaillard P. Rational Solutions to the Boussinesq Equation. Fundam. J. Math. Appl. 2019;2(1):1-4.

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a