Short Communication
BibTex RIS Cite

Applicable Multiplicative Calculus Using Multiplicative Modulus Function

Year 2019, , 195 - 199, 20.12.2019
https://doi.org/10.33401/fujma.630045

Abstract

The classical calculus is viewed as additive calculus based on addition in the real line.  Another known multiplicative calculus corresponding to multiplication in the positive real axis has been precisely introduced.  Abstract multiplicative integration through positive measures has been newly introduced.  Results of multiplicative differentiation and integration have been obtained for completion, when some of them have been obtained through multiplicative modulus function. Results have been obtained also for abstract multiplicative measure integration.

Supporting Institution

RUSA-Phase 2.0 grant

Project Number

letter No.F 24-51/2014-U, Policy (TN Multi-Gen),

Thanks

Dr. C. Ganesa Moorthy (Professor, Department of Mathematics, Alagappa University, Karaikudi- 630003, INDIA) gratefully acknowledges the joint financial support of RUSA-Phase 2.0 grant sanctioned vide letter No.F 24-51/2014-U, Policy (TN Multi-Gen), Dept. of Edn. Govt. of India, Dt. 09.10.2018, UGC-SAP (DRS-I) vide letter No.F.510/8/DRS-I/2016 (SAP-I) Dt. 23.08.2016 and DST (FIST - level I) 657876570 vide letter No.SR/FIST/MS-I/2018-17 Dt. 20.12.2018.

References

  • [1] A. E. Bashirov, E. M. Kurpinar, A. Ozyapici, Multiplicative calculus and its applications, J. Math. Anal. Appl., 337 (2008), 36-48.
  • [2] C. G. Moorthy, Infinite products using multiplicative modulus function, Math. Student, 88(3&4) (2019), 39-54.
  • [3] M. Grossman, R. Katz, Non-Newtonian Calculus, Les Press, Pigeon Cove, MA, 1972.
  • [4] U. Kadak, M. Ozl¨uk, Generalized Runge-Kutta method with respect to nonNewtonian calculus, Abst. Appl. Anal., (2015), Article ID 594685, 10 pages.
  • [5] A. Uzer, Multiplicative type complex calculus as an alternative to the classical calculus, Comput. Math. Appl., 60 (2010), 2725-2737.
  • [6] N. Yalcin, E. Celik, A. Gokdogan, Multiplicative Laplace transform and its applications, Optik, 127(20) (2016), 9984-9995.
  • [7] T. Abadeljawad, On multiplicative fractional calculus, (2015), arXiv:1510.04176v1[math.CA].
  • [8] D. Aniszewska, Multiplicative Runge-Kutta method, Non-Linear Dyn., 50(2007), 265-272.
  • [9] A. E. Bashirov, E. Misirli, Y. Tandogdu, A. Ozyapici, On modelling with multiplicative differential equations, Appl. Math. J. Chinese Univ., 26(4)(2011), 425-428.
  • [10] A. E. Bashirov, M. Riza, Complex multiplicative calculus, (2011), arXiv:1103.1462[math.CV].
  • [11] A. E. Bashirov, M. Riza, On complex multiplicative differentiation, TWMS J. App. Eng. Math., 1(1) (2011)75-85.
  • [12] A. E. Bashirov, E. M. Kurpinar, A. Ozyapici, Multiplicative Calculus and its applications, J. Math. Anal. Appl., 337 (2008), 36-48.
  • [13] A. E. Bashirov, S. Norozpour, On an alternative view to complex calculus, Math. Meth. Appl. Sci., 41 (2018), 7313-7324.
  • [14] A. H. Bhat, J. Majid, I. A. Wani, Multiplicative Sumudu transform and its applications, J. Emerging Tech. Innovative Res., 6(1)(2019), 579-589.
  • [15] K. Boruah, B. Hazarika, Application of geometric calculus in numerical analysis and difference sequence spaces, J. Math. Anal. Appl., 449(2)(2017),1265-1285.
  • [16] K. Boruah, B. Hazarika, G-Calculus, TWMS J. Appl. Eng. Math., 8(1) (2018), 94-105.
  • [17] K. Boruah, B. Hazarika, Bigeometric integral calculus, TWMS J. Appl. Eng. Math., 8(2) (2018), 374-385.
  • [18] K. Boruah, B. Hazarika, A. E. Bashirov, Solvability of bigeometric differential equations by numerical methods, Bol. Soc. Paran. Mat. (in press).
  • [19] D. Filip, C. Piatecki, An overview on the non-Newtonian calculus and its applications to economics, Appl. Math. Comput., 187(1) (2007), 68-78.
  • [20] L. Florack, H. Assen, Multiplicative calculus in biomedical image analysis, J. Math. Imaging Vis., 42 (2012), 64-75.
  • [21] D. Stanley, A multiplicative calculus, Primus, 9(4) (1999), 310-326.
  • [22] E. J. P. G. Schmidt, On multiplicative Lebesgue integration and families of evolution operators, Math. Scand., 29 (1971), 113-133.
  • [23] W. Rudin, Principles of Mathematical Analysis, Third edition, McGraw Hill, London, 1976.
  • [24] W. Rudin, Real and Complex Analysis, Third edition, McGraw Hill, New York, 1987.
  • [25] N. Marikkannan, P. Sooriyakala, C. G. Moorthy, Certain applications of differential subordination and superordination, Int. J. Pure Appl. Math., 34(4) (2007), 547-558.
  • [26] N. Marikkannan, C. G. Moorthy, On applications of differential subordination and superordination, Tamkang J. Math., 39(2) (2008), 155-164.
  • [27] C. G. Moorthy, Measure theory and Hausdorff dimension of Cantor sets of Continued fractions, Ph.D. Thesis, Alagappa University, 1992.
  • [28] C. G. Moorthy, N. Marikkannan, M. P. Jeyaraman, Applications of differential subordination and superordination, J. Indones. Math. Soc., 14(1) (2012), 47-56.
  • [29] C. G. Moorthy, R. Vijaya, P. Venkatachalapathy, Hausdorff dimension of Cantor-like sets, Kyungpook Math. J., 32(2) (1992), 197-202.
  • [30] C. G. Moorthy, A problem of good on Hausdorff dimension, Mathematika, 39(2) (1992), 244-246.
Year 2019, , 195 - 199, 20.12.2019
https://doi.org/10.33401/fujma.630045

Abstract

Project Number

letter No.F 24-51/2014-U, Policy (TN Multi-Gen),

References

  • [1] A. E. Bashirov, E. M. Kurpinar, A. Ozyapici, Multiplicative calculus and its applications, J. Math. Anal. Appl., 337 (2008), 36-48.
  • [2] C. G. Moorthy, Infinite products using multiplicative modulus function, Math. Student, 88(3&4) (2019), 39-54.
  • [3] M. Grossman, R. Katz, Non-Newtonian Calculus, Les Press, Pigeon Cove, MA, 1972.
  • [4] U. Kadak, M. Ozl¨uk, Generalized Runge-Kutta method with respect to nonNewtonian calculus, Abst. Appl. Anal., (2015), Article ID 594685, 10 pages.
  • [5] A. Uzer, Multiplicative type complex calculus as an alternative to the classical calculus, Comput. Math. Appl., 60 (2010), 2725-2737.
  • [6] N. Yalcin, E. Celik, A. Gokdogan, Multiplicative Laplace transform and its applications, Optik, 127(20) (2016), 9984-9995.
  • [7] T. Abadeljawad, On multiplicative fractional calculus, (2015), arXiv:1510.04176v1[math.CA].
  • [8] D. Aniszewska, Multiplicative Runge-Kutta method, Non-Linear Dyn., 50(2007), 265-272.
  • [9] A. E. Bashirov, E. Misirli, Y. Tandogdu, A. Ozyapici, On modelling with multiplicative differential equations, Appl. Math. J. Chinese Univ., 26(4)(2011), 425-428.
  • [10] A. E. Bashirov, M. Riza, Complex multiplicative calculus, (2011), arXiv:1103.1462[math.CV].
  • [11] A. E. Bashirov, M. Riza, On complex multiplicative differentiation, TWMS J. App. Eng. Math., 1(1) (2011)75-85.
  • [12] A. E. Bashirov, E. M. Kurpinar, A. Ozyapici, Multiplicative Calculus and its applications, J. Math. Anal. Appl., 337 (2008), 36-48.
  • [13] A. E. Bashirov, S. Norozpour, On an alternative view to complex calculus, Math. Meth. Appl. Sci., 41 (2018), 7313-7324.
  • [14] A. H. Bhat, J. Majid, I. A. Wani, Multiplicative Sumudu transform and its applications, J. Emerging Tech. Innovative Res., 6(1)(2019), 579-589.
  • [15] K. Boruah, B. Hazarika, Application of geometric calculus in numerical analysis and difference sequence spaces, J. Math. Anal. Appl., 449(2)(2017),1265-1285.
  • [16] K. Boruah, B. Hazarika, G-Calculus, TWMS J. Appl. Eng. Math., 8(1) (2018), 94-105.
  • [17] K. Boruah, B. Hazarika, Bigeometric integral calculus, TWMS J. Appl. Eng. Math., 8(2) (2018), 374-385.
  • [18] K. Boruah, B. Hazarika, A. E. Bashirov, Solvability of bigeometric differential equations by numerical methods, Bol. Soc. Paran. Mat. (in press).
  • [19] D. Filip, C. Piatecki, An overview on the non-Newtonian calculus and its applications to economics, Appl. Math. Comput., 187(1) (2007), 68-78.
  • [20] L. Florack, H. Assen, Multiplicative calculus in biomedical image analysis, J. Math. Imaging Vis., 42 (2012), 64-75.
  • [21] D. Stanley, A multiplicative calculus, Primus, 9(4) (1999), 310-326.
  • [22] E. J. P. G. Schmidt, On multiplicative Lebesgue integration and families of evolution operators, Math. Scand., 29 (1971), 113-133.
  • [23] W. Rudin, Principles of Mathematical Analysis, Third edition, McGraw Hill, London, 1976.
  • [24] W. Rudin, Real and Complex Analysis, Third edition, McGraw Hill, New York, 1987.
  • [25] N. Marikkannan, P. Sooriyakala, C. G. Moorthy, Certain applications of differential subordination and superordination, Int. J. Pure Appl. Math., 34(4) (2007), 547-558.
  • [26] N. Marikkannan, C. G. Moorthy, On applications of differential subordination and superordination, Tamkang J. Math., 39(2) (2008), 155-164.
  • [27] C. G. Moorthy, Measure theory and Hausdorff dimension of Cantor sets of Continued fractions, Ph.D. Thesis, Alagappa University, 1992.
  • [28] C. G. Moorthy, N. Marikkannan, M. P. Jeyaraman, Applications of differential subordination and superordination, J. Indones. Math. Soc., 14(1) (2012), 47-56.
  • [29] C. G. Moorthy, R. Vijaya, P. Venkatachalapathy, Hausdorff dimension of Cantor-like sets, Kyungpook Math. J., 32(2) (1992), 197-202.
  • [30] C. G. Moorthy, A problem of good on Hausdorff dimension, Mathematika, 39(2) (1992), 244-246.
There are 30 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Ganesa Moorthy C. 0000-0003-3119-7531

Project Number letter No.F 24-51/2014-U, Policy (TN Multi-Gen),
Publication Date December 20, 2019
Submission Date October 7, 2019
Acceptance Date December 18, 2019
Published in Issue Year 2019

Cite

APA C., G. M. (2019). Applicable Multiplicative Calculus Using Multiplicative Modulus Function. Fundamental Journal of Mathematics and Applications, 2(2), 195-199. https://doi.org/10.33401/fujma.630045
AMA C. GM. Applicable Multiplicative Calculus Using Multiplicative Modulus Function. Fundam. J. Math. Appl. December 2019;2(2):195-199. doi:10.33401/fujma.630045
Chicago C., Ganesa Moorthy. “Applicable Multiplicative Calculus Using Multiplicative Modulus Function”. Fundamental Journal of Mathematics and Applications 2, no. 2 (December 2019): 195-99. https://doi.org/10.33401/fujma.630045.
EndNote C. GM (December 1, 2019) Applicable Multiplicative Calculus Using Multiplicative Modulus Function. Fundamental Journal of Mathematics and Applications 2 2 195–199.
IEEE G. M. C., “Applicable Multiplicative Calculus Using Multiplicative Modulus Function”, Fundam. J. Math. Appl., vol. 2, no. 2, pp. 195–199, 2019, doi: 10.33401/fujma.630045.
ISNAD C., Ganesa Moorthy. “Applicable Multiplicative Calculus Using Multiplicative Modulus Function”. Fundamental Journal of Mathematics and Applications 2/2 (December 2019), 195-199. https://doi.org/10.33401/fujma.630045.
JAMA C. GM. Applicable Multiplicative Calculus Using Multiplicative Modulus Function. Fundam. J. Math. Appl. 2019;2:195–199.
MLA C., Ganesa Moorthy. “Applicable Multiplicative Calculus Using Multiplicative Modulus Function”. Fundamental Journal of Mathematics and Applications, vol. 2, no. 2, 2019, pp. 195-9, doi:10.33401/fujma.630045.
Vancouver C. GM. Applicable Multiplicative Calculus Using Multiplicative Modulus Function. Fundam. J. Math. Appl. 2019;2(2):195-9.

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a