Research Article
BibTex RIS Cite
Year 2020, , 70 - 85, 10.06.2020
https://doi.org/10.33401/fujma.670266

Abstract

References

  • [1] J. Aledo, R. Rubio, J. Salamanca, Complete spacelike hypersurfaces in generalized Robertson–Walker and the null convergence condition: Calabi– Bernstein problem, RACSAM Rev. R. Acad. Cienc. Exactas F´ıs. Nat. Ser. A Mat., doi: 10.1007/s13398-016-0277-3 (2016).
  • [2] L. J. Alias, P. Mira, On the Calabi-Bernstein theorem for maximal hypersurfaces in the Lorentz-Minkowski space, Publ. R. Soc. Mat. Esp., 4 (2003), 23–55.
  • [3] L. J. Alias, A. Romero, M. Sanchez, Uniqueness of complete spacelike hypersurfaces of constant mean curvature in Generalized Robertson–Walker spacetimes, Gen. Relativity Gravitation, 27 (1995), 71–84.
  • [4] R. Bartnik, Existence of maximal surfaces in asymptotically flat spacetimes, Comm. Math. Phys., 94 (1984), 155–175.
  • [5] D. Brill, F. Flaherty, Isolated maximal surfaces in spacetime, Comm. Math. Phys., 50 (1976), 157–165.
  • [6] S. Y. Cheng, S. T. Yau, Maximal spacelike hypersurfaces in the Lorentz-Minkowski spaces, Ann. of Math. (2), 104(3) (1976), 407–419.
  • [7] Y. Choquet-Bruhat, A. Fischer, J. Marsden, Isolated Gravitating Systems in General Relativity, Italian, 1979, 396–456.
  • [8] Y. Choquet-Bruhat, Quelques propriétés des sous-variétés maximales dune variété lorentzienne, C. R. Math. Acad. Sci. Paris, Serie A, 281 (1975), 577–580.
  • [9] H. F. de Lima, U. L. Parente, On the geometry of maximal spacelike hypersurfaces immersed in a generalized Robertson–Walker spacetime, Ann. Mat. Pura Appl. 192 (2013), 649–663.
  • [10] C. A. Mantica, L. G. Molinardi, Generalized Robertson-Walker spacetimes - A survey, Int. J. Geom. Methods Mod. Phys., 14 (2017), 1730001 (27 pages) doi: 10.1142/S021988781730001X.
  • [11] C. A. Mantica, L. G. Molinardi, On the Weyl and Ricci tensors of generalized Robertson-Walker spacetimes, J. Math. Phys., 57, 102502 (2016), doi: 10.1063/1.4965714.
  • [12] J. E. Marsden, F. J. Tipler, Maximal hypersurfaces and foliations of constant mean curvature in general relativity, Phys. Rep., 66(3) (1980), 109-139.
  • [13] A. Romero, R. Rubio, J. J. Salamanca, Uniqueness of complete maximal hypersurfaces in spatially parabolic generalized Robertson-Walker spacetimes, Classical Quantum Gravity, 30 (2013), 115007.
  • [14] M. Barros, Free elasticae and Willmore tori in warped product spaces, Glasg. Math. J., 40 (1998), 265-272.
  • [15] M. Barros, A geometric algorithm to construct new solitons in the O(3) nonlinear sigma model, Phys. Lett. B, 553(3-4) (2003), 325-331.
  • [16] M. Barros, O. J. Garay, A. D. Singer, Elasticae with constant slant in the complex projective plane and new examples of Willmore tori in five spheres, Tohoku Math. J. (2), 51(2) (1999), 177–192.
  • [17] J. L. Weiner, On the problem of Chen, Willmore, et al., Indiana Univ. Math.l J., 27 (1978), 19–35.
  • [18] C. Atindogbe, H. Fotsing Tetsing, Newton transformations on null hypersurfaces, Commun. Math., 23 (2015), 57–83.
  • [19] C. Atindogbe, Scalar curvature on lightlike hypersurfaces, Appl. Sci., 11 (2009), 9-18.
  • [20] K. L. Duggal, A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Academic, 364, Dordrecht, 1996.
  • [21] K. L. Duggal B. Sahin, Di erential Geometry of Lightlike Submanifolds, Birkha¨user Verlag AG, Basel, 2010.
  • [22] G. J. Galloway, Maximum principles for null hypersurfaces and null splitting theorems, Annes de l’institut Henri Poincaré, 1, (2000), 543–567.
  • [23] M. Gutiérrez, B. Olea, Induced Riemannian structures on null hypersurfaces, Math. Nachr., (2015), 1–18, doi: https://doi.org/10.1002/mana.201400355.
  • [24] M. Gutiérrez, B. Olea, Totally umbilic null hypersurfaces in generalized Robertson-Walker spaces Dier. Geom. Appl., 42 (2015), 15–30.
  • [25] B. Y. Chen, A simple characterization of generalized Robertson-Walker spacetimes, Gen. Relativity Gravitation, 46:1833 (2014), DOI 10.1007/s10714- 014-1833-9.
  • [26] A. Fialkow, Conformals geodesics, Trans. Amer. Math. Soc., 45(3) (1939), 443–473.
  • [27] K. L. Duggal, On scalar curvature in lightlike geometry, J. Geom. Phys., 57 (2007), 473–481.
  • [28] H. K. El-Sayied, S. Shenawy, N. Syed, On symmetries of generalized Robertson-Walker spacetimes and applications, J. Dyn. Syst. Geom. Theor., 15(1) (2017), 51–69.
  • [29] C. Atindogbe M. Gutierrez, R. Hounnonkp`e, New properties on normalized null hypersurfaces, Mediterranean J. Math. Appl., 15:166 (2018), doi:: 10.1007/s00009-018-1210-0

Maximal and Willmore Null Hypersurfaces in Generalized Robertson-Walker Spacetimes

Year 2020, , 70 - 85, 10.06.2020
https://doi.org/10.33401/fujma.670266

Abstract

We establish after some technical results a characterization of maximal null hypersurfaces in terms of a constant mean curvature screen foliation (in the slices) induced by the Chen's vector field. Thereafter, bounds are provided for both the squared norm of the (screen) shape operator for non totally geodesic maximal null hypersurfaces and the scalar curvature of the fiber. In terms of the scalar curvature of the fiber and the warping function, we establish necessary and sufficient conditions for Null Convergence Condition (NCC) to be satisfied in which case we prove that there are no non totally geodesic maximal null hypersurfaces. A generic example consisting of graphs of functions defined on the fiber is given to support our results. Finally, we provide lower bounds for the extrinsic scalar curvature and give a characterization result for Willmore null hypersurfaces in generalized Robertson-Walker spacetimes.

References

  • [1] J. Aledo, R. Rubio, J. Salamanca, Complete spacelike hypersurfaces in generalized Robertson–Walker and the null convergence condition: Calabi– Bernstein problem, RACSAM Rev. R. Acad. Cienc. Exactas F´ıs. Nat. Ser. A Mat., doi: 10.1007/s13398-016-0277-3 (2016).
  • [2] L. J. Alias, P. Mira, On the Calabi-Bernstein theorem for maximal hypersurfaces in the Lorentz-Minkowski space, Publ. R. Soc. Mat. Esp., 4 (2003), 23–55.
  • [3] L. J. Alias, A. Romero, M. Sanchez, Uniqueness of complete spacelike hypersurfaces of constant mean curvature in Generalized Robertson–Walker spacetimes, Gen. Relativity Gravitation, 27 (1995), 71–84.
  • [4] R. Bartnik, Existence of maximal surfaces in asymptotically flat spacetimes, Comm. Math. Phys., 94 (1984), 155–175.
  • [5] D. Brill, F. Flaherty, Isolated maximal surfaces in spacetime, Comm. Math. Phys., 50 (1976), 157–165.
  • [6] S. Y. Cheng, S. T. Yau, Maximal spacelike hypersurfaces in the Lorentz-Minkowski spaces, Ann. of Math. (2), 104(3) (1976), 407–419.
  • [7] Y. Choquet-Bruhat, A. Fischer, J. Marsden, Isolated Gravitating Systems in General Relativity, Italian, 1979, 396–456.
  • [8] Y. Choquet-Bruhat, Quelques propriétés des sous-variétés maximales dune variété lorentzienne, C. R. Math. Acad. Sci. Paris, Serie A, 281 (1975), 577–580.
  • [9] H. F. de Lima, U. L. Parente, On the geometry of maximal spacelike hypersurfaces immersed in a generalized Robertson–Walker spacetime, Ann. Mat. Pura Appl. 192 (2013), 649–663.
  • [10] C. A. Mantica, L. G. Molinardi, Generalized Robertson-Walker spacetimes - A survey, Int. J. Geom. Methods Mod. Phys., 14 (2017), 1730001 (27 pages) doi: 10.1142/S021988781730001X.
  • [11] C. A. Mantica, L. G. Molinardi, On the Weyl and Ricci tensors of generalized Robertson-Walker spacetimes, J. Math. Phys., 57, 102502 (2016), doi: 10.1063/1.4965714.
  • [12] J. E. Marsden, F. J. Tipler, Maximal hypersurfaces and foliations of constant mean curvature in general relativity, Phys. Rep., 66(3) (1980), 109-139.
  • [13] A. Romero, R. Rubio, J. J. Salamanca, Uniqueness of complete maximal hypersurfaces in spatially parabolic generalized Robertson-Walker spacetimes, Classical Quantum Gravity, 30 (2013), 115007.
  • [14] M. Barros, Free elasticae and Willmore tori in warped product spaces, Glasg. Math. J., 40 (1998), 265-272.
  • [15] M. Barros, A geometric algorithm to construct new solitons in the O(3) nonlinear sigma model, Phys. Lett. B, 553(3-4) (2003), 325-331.
  • [16] M. Barros, O. J. Garay, A. D. Singer, Elasticae with constant slant in the complex projective plane and new examples of Willmore tori in five spheres, Tohoku Math. J. (2), 51(2) (1999), 177–192.
  • [17] J. L. Weiner, On the problem of Chen, Willmore, et al., Indiana Univ. Math.l J., 27 (1978), 19–35.
  • [18] C. Atindogbe, H. Fotsing Tetsing, Newton transformations on null hypersurfaces, Commun. Math., 23 (2015), 57–83.
  • [19] C. Atindogbe, Scalar curvature on lightlike hypersurfaces, Appl. Sci., 11 (2009), 9-18.
  • [20] K. L. Duggal, A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Academic, 364, Dordrecht, 1996.
  • [21] K. L. Duggal B. Sahin, Di erential Geometry of Lightlike Submanifolds, Birkha¨user Verlag AG, Basel, 2010.
  • [22] G. J. Galloway, Maximum principles for null hypersurfaces and null splitting theorems, Annes de l’institut Henri Poincaré, 1, (2000), 543–567.
  • [23] M. Gutiérrez, B. Olea, Induced Riemannian structures on null hypersurfaces, Math. Nachr., (2015), 1–18, doi: https://doi.org/10.1002/mana.201400355.
  • [24] M. Gutiérrez, B. Olea, Totally umbilic null hypersurfaces in generalized Robertson-Walker spaces Dier. Geom. Appl., 42 (2015), 15–30.
  • [25] B. Y. Chen, A simple characterization of generalized Robertson-Walker spacetimes, Gen. Relativity Gravitation, 46:1833 (2014), DOI 10.1007/s10714- 014-1833-9.
  • [26] A. Fialkow, Conformals geodesics, Trans. Amer. Math. Soc., 45(3) (1939), 443–473.
  • [27] K. L. Duggal, On scalar curvature in lightlike geometry, J. Geom. Phys., 57 (2007), 473–481.
  • [28] H. K. El-Sayied, S. Shenawy, N. Syed, On symmetries of generalized Robertson-Walker spacetimes and applications, J. Dyn. Syst. Geom. Theor., 15(1) (2017), 51–69.
  • [29] C. Atindogbe M. Gutierrez, R. Hounnonkp`e, New properties on normalized null hypersurfaces, Mediterranean J. Math. Appl., 15:166 (2018), doi:: 10.1007/s00009-018-1210-0
There are 29 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Cyriaque Atindogbé 0000-0001-8346-4027

Hippolyte Hounnon 0000-0002-4068-6225

Publication Date June 10, 2020
Submission Date January 4, 2020
Acceptance Date January 25, 2020
Published in Issue Year 2020

Cite

APA Atindogbé, C., & Hounnon, H. (2020). Maximal and Willmore Null Hypersurfaces in Generalized Robertson-Walker Spacetimes. Fundamental Journal of Mathematics and Applications, 3(1), 70-85. https://doi.org/10.33401/fujma.670266
AMA Atindogbé C, Hounnon H. Maximal and Willmore Null Hypersurfaces in Generalized Robertson-Walker Spacetimes. Fundam. J. Math. Appl. June 2020;3(1):70-85. doi:10.33401/fujma.670266
Chicago Atindogbé, Cyriaque, and Hippolyte Hounnon. “Maximal and Willmore Null Hypersurfaces in Generalized Robertson-Walker Spacetimes”. Fundamental Journal of Mathematics and Applications 3, no. 1 (June 2020): 70-85. https://doi.org/10.33401/fujma.670266.
EndNote Atindogbé C, Hounnon H (June 1, 2020) Maximal and Willmore Null Hypersurfaces in Generalized Robertson-Walker Spacetimes. Fundamental Journal of Mathematics and Applications 3 1 70–85.
IEEE C. Atindogbé and H. Hounnon, “Maximal and Willmore Null Hypersurfaces in Generalized Robertson-Walker Spacetimes”, Fundam. J. Math. Appl., vol. 3, no. 1, pp. 70–85, 2020, doi: 10.33401/fujma.670266.
ISNAD Atindogbé, Cyriaque - Hounnon, Hippolyte. “Maximal and Willmore Null Hypersurfaces in Generalized Robertson-Walker Spacetimes”. Fundamental Journal of Mathematics and Applications 3/1 (June 2020), 70-85. https://doi.org/10.33401/fujma.670266.
JAMA Atindogbé C, Hounnon H. Maximal and Willmore Null Hypersurfaces in Generalized Robertson-Walker Spacetimes. Fundam. J. Math. Appl. 2020;3:70–85.
MLA Atindogbé, Cyriaque and Hippolyte Hounnon. “Maximal and Willmore Null Hypersurfaces in Generalized Robertson-Walker Spacetimes”. Fundamental Journal of Mathematics and Applications, vol. 3, no. 1, 2020, pp. 70-85, doi:10.33401/fujma.670266.
Vancouver Atindogbé C, Hounnon H. Maximal and Willmore Null Hypersurfaces in Generalized Robertson-Walker Spacetimes. Fundam. J. Math. Appl. 2020;3(1):70-85.

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a