Research Article
BibTex RIS Cite

Two-Grid Iterative Method for a Class of Fredholm Functional Integral Equations based on the Radial Basis Function Interpolation

Year 2019, Volume: 2 Issue: 2, 117 - 122, 20.12.2019
https://doi.org/10.33401/fujma.633905

Abstract

In this paper, we discuss a two-grid iterative method for solving a class of Fredholm functional integral equations based on the radial basis function interpolation. Firstly, the existence and uniqueness of the solution are proved by Banach fixed point theorem. Secondly, the algorithm and convergence analysis of the radial basis function approximation method is given on the coarse grid. Thirdly, the fine grid iterative solution and convergence results are obtained. Finally, the validity and reliability of the theoretical analysis are verified by two numerical experiments.

Supporting Institution

Postgraduate Demonstration Course Construction Project of Guangdong Province

Project Number

2018SFKC38

References

  • [1] K. E. Atkinson, W. Han, Theoretical Numerical Analysis, 2nd edn. Springer, Berlin, (2005).
  • [2] K. E. Atkinson, Iterative methods for the numerical solution of Fredholm integral equations of the second kind, Technical Report, Computer Center, Australian Natl. Univ., Canberra.
  • [3] F. Muller, W. Varnhorn, On approximation and numerical solution of Fredholm integral equations of second kind using quasi-interpolation, Appl. Math. Comput., 217 (2011), 6409-6416.
  • [4] Q. S. Wang, H. S. Wang, Meshless method and convergence analysis for 2-dimensional Fredholm integral equation with complex factors, J. Comput. Appl. Math., 304 (2016), 18-25.
  • [5] M. Felahat, M. M. Moghadam, A. A. Askarihemmat, Application of Legendre wavelets for solving a class of functional integral equations, Iran. J. Sci. Technol., 43(3) (2019), 1089-1100.
  • [6] Y. Talaei, Chelyshkov collocation approach for solving linear weakly singular Volterra integral equations, J. Appl. Math. Comput., 60(1-2) (2019), 201-222.
  • [7] K. E. Atkinson, Two-grid iteration methods for linear integral equations of the second kind on piecewise smooth surfaces in R3, SIAM J. Sci Comput., 15(5) (1994), 1083-1104.
  • [8] C. Chen, W. Liu, A two-grid method for finite element solutions for nonlinear parabolic equations, Abstr. Appl. Anal., 2012(11) (2012).
  • [9] J. Yan, Q. Zhang, L. Zhu, Z. Zhang, Two-grid methods for finite volume element approximations of nonlinear Sobolev equations, Numer. Funct. Anal. Optim., 37 (2016), 391-414.
  • [10] C. J. Chen, K. Li, Y. P. Chen, Y. Q. Huang, Two-grid finite element methods combined with Crank-Nicolson scheme for nonlinear Sobolev equations, Adv. Comput. Math., 45 (2019), 611-630.
  • [11] Z. M. Wu, Convergence analysis for the Radial basis function interpolation, Ann. Math., 14A(4) (1993), 480-486. (in Chinese).
Year 2019, Volume: 2 Issue: 2, 117 - 122, 20.12.2019
https://doi.org/10.33401/fujma.633905

Abstract

Project Number

2018SFKC38

References

  • [1] K. E. Atkinson, W. Han, Theoretical Numerical Analysis, 2nd edn. Springer, Berlin, (2005).
  • [2] K. E. Atkinson, Iterative methods for the numerical solution of Fredholm integral equations of the second kind, Technical Report, Computer Center, Australian Natl. Univ., Canberra.
  • [3] F. Muller, W. Varnhorn, On approximation and numerical solution of Fredholm integral equations of second kind using quasi-interpolation, Appl. Math. Comput., 217 (2011), 6409-6416.
  • [4] Q. S. Wang, H. S. Wang, Meshless method and convergence analysis for 2-dimensional Fredholm integral equation with complex factors, J. Comput. Appl. Math., 304 (2016), 18-25.
  • [5] M. Felahat, M. M. Moghadam, A. A. Askarihemmat, Application of Legendre wavelets for solving a class of functional integral equations, Iran. J. Sci. Technol., 43(3) (2019), 1089-1100.
  • [6] Y. Talaei, Chelyshkov collocation approach for solving linear weakly singular Volterra integral equations, J. Appl. Math. Comput., 60(1-2) (2019), 201-222.
  • [7] K. E. Atkinson, Two-grid iteration methods for linear integral equations of the second kind on piecewise smooth surfaces in R3, SIAM J. Sci Comput., 15(5) (1994), 1083-1104.
  • [8] C. Chen, W. Liu, A two-grid method for finite element solutions for nonlinear parabolic equations, Abstr. Appl. Anal., 2012(11) (2012).
  • [9] J. Yan, Q. Zhang, L. Zhu, Z. Zhang, Two-grid methods for finite volume element approximations of nonlinear Sobolev equations, Numer. Funct. Anal. Optim., 37 (2016), 391-414.
  • [10] C. J. Chen, K. Li, Y. P. Chen, Y. Q. Huang, Two-grid finite element methods combined with Crank-Nicolson scheme for nonlinear Sobolev equations, Adv. Comput. Math., 45 (2019), 611-630.
  • [11] Z. M. Wu, Convergence analysis for the Radial basis function interpolation, Ann. Math., 14A(4) (1993), 480-486. (in Chinese).
There are 11 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Qisheng Wang 0000-0001-6254-2938

Huimin Zhou This is me 0000-0003-3078-7652

Project Number 2018SFKC38
Publication Date December 20, 2019
Submission Date October 16, 2019
Acceptance Date December 8, 2019
Published in Issue Year 2019 Volume: 2 Issue: 2

Cite

APA Wang, Q., & Zhou, H. (2019). Two-Grid Iterative Method for a Class of Fredholm Functional Integral Equations based on the Radial Basis Function Interpolation. Fundamental Journal of Mathematics and Applications, 2(2), 117-122. https://doi.org/10.33401/fujma.633905
AMA Wang Q, Zhou H. Two-Grid Iterative Method for a Class of Fredholm Functional Integral Equations based on the Radial Basis Function Interpolation. Fundam. J. Math. Appl. December 2019;2(2):117-122. doi:10.33401/fujma.633905
Chicago Wang, Qisheng, and Huimin Zhou. “Two-Grid Iterative Method for a Class of Fredholm Functional Integral Equations Based on the Radial Basis Function Interpolation”. Fundamental Journal of Mathematics and Applications 2, no. 2 (December 2019): 117-22. https://doi.org/10.33401/fujma.633905.
EndNote Wang Q, Zhou H (December 1, 2019) Two-Grid Iterative Method for a Class of Fredholm Functional Integral Equations based on the Radial Basis Function Interpolation. Fundamental Journal of Mathematics and Applications 2 2 117–122.
IEEE Q. Wang and H. Zhou, “Two-Grid Iterative Method for a Class of Fredholm Functional Integral Equations based on the Radial Basis Function Interpolation”, Fundam. J. Math. Appl., vol. 2, no. 2, pp. 117–122, 2019, doi: 10.33401/fujma.633905.
ISNAD Wang, Qisheng - Zhou, Huimin. “Two-Grid Iterative Method for a Class of Fredholm Functional Integral Equations Based on the Radial Basis Function Interpolation”. Fundamental Journal of Mathematics and Applications 2/2 (December 2019), 117-122. https://doi.org/10.33401/fujma.633905.
JAMA Wang Q, Zhou H. Two-Grid Iterative Method for a Class of Fredholm Functional Integral Equations based on the Radial Basis Function Interpolation. Fundam. J. Math. Appl. 2019;2:117–122.
MLA Wang, Qisheng and Huimin Zhou. “Two-Grid Iterative Method for a Class of Fredholm Functional Integral Equations Based on the Radial Basis Function Interpolation”. Fundamental Journal of Mathematics and Applications, vol. 2, no. 2, 2019, pp. 117-22, doi:10.33401/fujma.633905.
Vancouver Wang Q, Zhou H. Two-Grid Iterative Method for a Class of Fredholm Functional Integral Equations based on the Radial Basis Function Interpolation. Fundam. J. Math. Appl. 2019;2(2):117-22.

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a