Araştırma Makalesi
BibTex RIS Kaynak Göster

Hurewicz and Poincare Theorems for Simplicial Modules

Yıl 2022, Cilt: 5 Sayı: 2, 81 - 88, 01.06.2022
https://doi.org/10.33401/fujma.1031108

Öz

We will give the simplicial analogues of Hurewicz and Poincaré theorems as an application of simplicial homology and homotopy.

Kaynakça

  • [1] J. C. Moore, Homotopie des Complexes Mon¨oideaux, Seminaire Henri Cartan, 1954.
  • [2] J. W. Milnor, The geometric realization of a semi-simplicial complex, Ann. of Math., 2 (65) (1957), 357-362.
  • [3] M. Andre, Homologie des Algebres Commutatives, Springer-Verlag, 1970.
  • [4] D. Quillen, Higher algebraic K-theory, Proc. Seattle Lec., Notes Math., Springer, 341 (1973), 85-147.
  • [5] Z. Arvasi, T. Porter, Higher dimensional peiffer elements in simplicial commutative algebras, Theory Appl. Categ., 3 (1997), 1-23.
  • [6] Z. Arvasi, T. Porter, Simplicial and crossed resolutions of commutative algebra, J. Algebra, 181 (1996), 426-448.
  • [7] J. Wu, Simplicial objects and homotopy groups, Lecture Notes Series Institute for Mathematical Sciences, National University of Singapore, World scientific, 19 (2010), 31-183.
  • [8] E. B. Curtis, Simplicial homotopy theory, Adv. Math., 6 (1971), 107-209.
  • [9] P. G. Goerss, J. F. Jardine, Simplicial Homotopy Theory: Progress in Mathematics, Birkhauser, Basel-Boston-Berlin, 1999.
  • [10] J. P. May, Simplicial Objects in Algebraic Topology, Mathematic Studies 11, Van Nostrand, 1967.
Yıl 2022, Cilt: 5 Sayı: 2, 81 - 88, 01.06.2022
https://doi.org/10.33401/fujma.1031108

Öz

Kaynakça

  • [1] J. C. Moore, Homotopie des Complexes Mon¨oideaux, Seminaire Henri Cartan, 1954.
  • [2] J. W. Milnor, The geometric realization of a semi-simplicial complex, Ann. of Math., 2 (65) (1957), 357-362.
  • [3] M. Andre, Homologie des Algebres Commutatives, Springer-Verlag, 1970.
  • [4] D. Quillen, Higher algebraic K-theory, Proc. Seattle Lec., Notes Math., Springer, 341 (1973), 85-147.
  • [5] Z. Arvasi, T. Porter, Higher dimensional peiffer elements in simplicial commutative algebras, Theory Appl. Categ., 3 (1997), 1-23.
  • [6] Z. Arvasi, T. Porter, Simplicial and crossed resolutions of commutative algebra, J. Algebra, 181 (1996), 426-448.
  • [7] J. Wu, Simplicial objects and homotopy groups, Lecture Notes Series Institute for Mathematical Sciences, National University of Singapore, World scientific, 19 (2010), 31-183.
  • [8] E. B. Curtis, Simplicial homotopy theory, Adv. Math., 6 (1971), 107-209.
  • [9] P. G. Goerss, J. F. Jardine, Simplicial Homotopy Theory: Progress in Mathematics, Birkhauser, Basel-Boston-Berlin, 1999.
  • [10] J. P. May, Simplicial Objects in Algebraic Topology, Mathematic Studies 11, Van Nostrand, 1967.
Toplam 10 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

Elif Ilgaz Çağlayan 0000-0002-4202-6570

Yayımlanma Tarihi 1 Haziran 2022
Gönderilme Tarihi 1 Aralık 2021
Kabul Tarihi 25 Şubat 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 5 Sayı: 2

Kaynak Göster

APA Ilgaz Çağlayan, E. (2022). Hurewicz and Poincare Theorems for Simplicial Modules. Fundamental Journal of Mathematics and Applications, 5(2), 81-88. https://doi.org/10.33401/fujma.1031108
AMA Ilgaz Çağlayan E. Hurewicz and Poincare Theorems for Simplicial Modules. Fundam. J. Math. Appl. Haziran 2022;5(2):81-88. doi:10.33401/fujma.1031108
Chicago Ilgaz Çağlayan, Elif. “Hurewicz and Poincare Theorems for Simplicial Modules”. Fundamental Journal of Mathematics and Applications 5, sy. 2 (Haziran 2022): 81-88. https://doi.org/10.33401/fujma.1031108.
EndNote Ilgaz Çağlayan E (01 Haziran 2022) Hurewicz and Poincare Theorems for Simplicial Modules. Fundamental Journal of Mathematics and Applications 5 2 81–88.
IEEE E. Ilgaz Çağlayan, “Hurewicz and Poincare Theorems for Simplicial Modules”, Fundam. J. Math. Appl., c. 5, sy. 2, ss. 81–88, 2022, doi: 10.33401/fujma.1031108.
ISNAD Ilgaz Çağlayan, Elif. “Hurewicz and Poincare Theorems for Simplicial Modules”. Fundamental Journal of Mathematics and Applications 5/2 (Haziran 2022), 81-88. https://doi.org/10.33401/fujma.1031108.
JAMA Ilgaz Çağlayan E. Hurewicz and Poincare Theorems for Simplicial Modules. Fundam. J. Math. Appl. 2022;5:81–88.
MLA Ilgaz Çağlayan, Elif. “Hurewicz and Poincare Theorems for Simplicial Modules”. Fundamental Journal of Mathematics and Applications, c. 5, sy. 2, 2022, ss. 81-88, doi:10.33401/fujma.1031108.
Vancouver Ilgaz Çağlayan E. Hurewicz and Poincare Theorems for Simplicial Modules. Fundam. J. Math. Appl. 2022;5(2):81-8.

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a