Derleme
BibTex RIS Kaynak Göster

Sustainable Wood Plastic Composite Materials: Raw Materials, Structural Properties, Production Processes and Current Trends

Yıl 2024, Cilt: 10 Sayı: 2, 264 - 280, 31.08.2024

Öz

In parallel with technological developments, the need for affordable, functional and sustainable materials is increasing day by day. At this point, wood composite materials, which provide many economic and environmental advantages compared to traditional polymer matrix composites, attract great interest due to their functionality in a variety of engineering applications. In this study, the structural properties of functional wood plastic composites were examined before the sustainability analysis and the current market analysis was made by evaluating the usage areas of these materials Furthermore, information about these materials' production methods is presented, and approaches for improving material properties are evaluated. The literature review compiled integrated information on the recent progress of these composites and the development of material properties.

Proje Numarası

2022-01.BŞEÜ.03-07

Kaynakça

  • [1] T. W. Clyne and D. Hull, An introduction to composite materials, 3rd Edition, UK: Cambridge University Press, 2019.
  • [2] A. Thule and R. Shanks, Natural fibre composites: materials, processes and properties, USA: Woodhead Publishing, 2014.
  • [3] H. Ehrlich, D. Janussen, P.Simon, V. V. Bazhenov, N. P. Shapkin, C. Erler, M. Mertig, R. Born, S. Heinemann, T. Hanke and H. Worch,”Nanostructural organization of naturally occurring composites—part II: silica-chitin-based biocomposites,” Journal of Nanomaterials, vol. 2008, pp. 1-8, February 2008. doi:10.1155/2008/670235
  • [4] S. Kangishwar, N. Radhika, A.A. Sheik, A. Chavali and S. Hariharan, “A comprehensive review on polymer matrix composites: material selection, fabrication, and application,” Polymer Bulletin, vol.80, pp.47-87, January 2022. doi:10.1007/s00289-022-04087-4
  • [5] D. K. Hale, “The physical properties of composite materials,” Journal of Materials Science, vol.11, pp. 2105-2141, November 1976. doi:10.1007/PL00020339
  • [6] G. Özsin, M. Kılıç, Ç. Kırbıyık Kurukavak, E. Varol, “Thermal Characteristics, Stability, and Degradation of PVC Composites and Nanocomposites,” in: H. A. Sabu, T. (eds) Poly(Vinyl Chloride) Based Composites and Nanocomposites. Engineering Materials. Cham, Switzerland: Springer, 2024.
  • [7] D. Kumlutaş, İ.H. Tavman and M. Turhan Çoban, “Thermal conductivity of particle filled polyethylene composite materials,” Composites Science and Technology, vol. 63, pp. 113-117, January 2003. doi:10.1016/S0266-3538(02)00194-X
  • [8] S. Dixit, R. Goel, A. Dubey, P. R. Shivhare and T. Bhalavi, “Natural fibre reinforced polymer composite materials-A review,” Polymers from Renewable Resources, vol.8, pp. 71-78, May 2017. Doi: 10.1177/204124791700800203
  • [9] D. K. Rajak, D. D. Pagar, R. Kumar, and C. I. Pruncu, “Recent progress of reinforcement materials: a comprehensive overview of composite materials,” Journal of Materials Research and Technology, vol.8, pp.6354-6374, November 2019. doi:10.1016/j.jmrt.2019.09.068
  • [10] A.K. Sharma, R. Bhandari, A. Aherwar and R. Rimašauskienė, “Matrix materials used in composites: A comprehensive study,” Materials Today: Proceedings, vol.21, pp.1559-1562, November 2020. doi:10.1016/j.matpr.2019.11.086
  • [11] M. De Araújo, “Natural and man-made fibres: physical and mechanical properties. In Fibrous and composite materials for civil engineering applications,” USA: Woodhead Publishing, 2014.
  • [12] D. C. Davis, J. W. Wilkerson, J. Zhu and D. O. Ayewah, “Improvements in mechanical properties of a carbon fiber epoxy composite using nanotube science and technology,” Composite Structures, vol.92, pp.2653-2662. October 2010. doi:10.1016/j.compstruct.2010.03.019
  • [13] S. S. Wicks, R. G.de Villoria, and B. L. Wardle, “Interlaminar and intralaminar reinforcement of composite laminates with aligned carbon nanotubes,” Composites Science and Technology, vol.70, pp.20-28, January 2010. doi:10.1016/j.compscitech.2009.09.001
  • [14] R. Teti, “Machining of Composite Materials,” CIRP Annals, vol.51, pp. 611-634, July 2002. doi:10.1016/S0007-8506(07)61703-X
  • [15] E. Omanović-Mikličanin, A. Badnjević, A., A. Kazlagić and M. Hajlovac, “Nanocomposites: A brief review,” Health and Technology, vol.10, pp.51-59, January 2020. doi:10.1007/s12553-019-00380-x
  • [16] Singh, S. and Singh, S., Fabrication and Machining of Advanced Materials and Composites, USA: CRC Press, 2022.
  • [17] B. C. Ray, “Temperature effect during humid ageing on interfaces of glass and carbon fibers reinforced epoxy composites,” Journal of Colloid and Interface Science, vol. 298, pp. 111-117, June 2006. doi:10.1016/j.jcis.2005.12.023
  • [18] M. Mukherjee, C.K. Das and A.P. Kharitonov, “Fluorinated and oxyfluorinated short Kevlar fiber‐reinforced ethylene propylene polymer,” Polymer Composites, vol.27, pp. 205-212, March 2006. doi:10.1002/pc.20195
  • [19] S.D. Thoppul, J. Finegan, and R.F. Gibson, “Mechanics of mechanically fastened joints in polymer–matrix composite structures – A review,” Composites Science and Technology, vol.69, pp. 301-329, March 2009. doi:10.1016/j.compscitech.2008.09.037
  • [20] M. R. Wisnom, M. Gigliotti, N. Ersoy, M. Campbell, and K.D. Potter, “Mechanisms generating residual stresses and distortion during manufacture of polymer–matrix composite structures,” Composites Part A: Applied Science and Manufacturing, vol.37, pp.522-529. April 2006. doi:10.1016/j.compositesa.2005.05.019,
  • [21] M. Kutz, Mechanical Engineers'Handbook, NJ: Wiley 2015.
  • [22] S. K. Najafi, “Use of recycled plastics in wood plastic composites–A review,” Waste management, vol.33, pp. 1898-1905, September 2013. doi:10.1016/j.wasman.2013.05.017 [23] M. J. Taufiq, M.R. Mansor, and Z. Mustafa, “Characterisation of wood plastic composite manufactured from kenaf fibre reinforced recycled-unused plastic blend,” Composite Structures, vol.189, pp. 510-515, April 2018. doi:10.1016/j.compstruct.2018.01.090
  • [24] K. Karakuş, “Üniversitemizdeki polietilen ve polipropilen atıkların polimer kompozit üretiminde değerlendirilmesi,” MSc. Dissertation, Kahramanmaraş Sütçü İmam University,, Kahramanmaraş, Türkiye, 2008.
  • [25] A. Ashori, “Wood–plastic composites as promising green-composites for automotive industries!,” Bioresource Technology, vol.99, pp. 4661-4667, July 2008. doi:10.1016/j.biortech.2007.09.043
  • [26] Fortune Business Insights. “Wood Plastic Composite Market Size, Share & Industry Analysis, By Material (Polyethylene, Polypropylene, Polyvinyl Chloride and Others), By Application (Decking, Automotive, Sliding & fencing, Technical Application, Furniture, Consumer Goods and Others), and Regional Forecast, 2020-2027”. Available: https://www.fortunebusinessinsights.com/enquiry/request-sample-pdf/wood-plastic-composite-market-102821. [Accessed: December 12, 2022].
  • [27] Precedence Research. “Wood plastic composites”. Available: https://www.grandviewresearch.com/industry-analysis/wood-plastic-composites-market . [Accessed: December 7, 2022].
  • [28] Google Analytics. “Google Analytics 2023”. Available: https://analytics.google.com/analytics/web/. [Accessed: December 10, 2023].
  • [29] Google Patents, “Google Patents 2023. Available: https://www.google.com/patents. [Accessed: December 14 2023].
  • [30] Clirivate, “Web of Science 2022”. 2023, Available: https://clarivate.com/. [Accessed: December 14 2023].
  • [31] Y. Feng, H. Hao, H. Lu, C. L. Chow, and D. Lau, “Exploring the development and applications of sustainable natural fiber composites: A review from a nanoscale perspective,” Composites Part B: Engineering, vol. 276, pp.111369, May 2024. doi:10.1016/j.compositesb.2024.111369
  • [32] G. Martins, F. Antunes, A. Mateus, A. and C. Malça, “Optimization of a wood plastic composite for architectural applications,” Procedia Manufacturing, vol.12, pp.203-220, September 2017. doi:10.1016/j.promfg.2017.08.025
  • [33] A. Jacob, “WPC industry focuses on performance and cost,” Reinforced Plastics, vol. 50, pp. 32-33, May 2006. doi:10.1016/S0034-3617(06)71010-4
  • [34] A.K., Bledzki, P. Franciszczak, Z. Osman, and M. Elbadawi, “Polypropylene biocomposites reinforced with softwood, abaca, jute, and kenaf fibers,” Industrial Crops and Products, vol.70, pp.91-99, August 2015. doi:10.1016/j.indcrop.2015.03.013
  • [35] L. Kristak, I. Kubovský, and R. Réh, “New challenges in wood and wood-based materials,” Polymers, vol. 13, pp.1-5, July 2021. doi:10.3390/polym13152538
  • [36] A. Gubana, and M. Melotto, “Experimental tests on wood-based in-plane strengthening solutions for the seismic retrofit of traditional timber floors,” Construction and Building Materials, vol. 191, pp. 290-299, December 2018. doi:10.1016/j.conbuildmat.2018.09.177
  • [37] G. Pritchard, “Two technologies merge: wood plastic composites,” Plastics, Additives and Compounding, vol.6, , pp. 18-21, July 2004. doi:10.1016/S1464-391X(04)00234-X
  • [38] M. Asif, “Sustainability of timber, wood and bamboo in construction, in Sustainability of Construction Materials,” Cambridge, UK: Woodhead Publishing, 2009.
  • [39] A. Faik, “Plant Cell Wall Structure-Pretreatment,” the Critical Relationship in Biomass Conversion to Fermentable Sugars. In: Green Biomass Pretreatment for Biofuels Production” Dordrecht, HollandSpringer: Dordrecht, Holland, Springer, 2013.
  • [40] D. N. S. Hon and N. Shiraishi, “Wood and Cellulosic Chemistry Revised, and Expanded”. London, UK: CRC Press, 2000.
  • [41] P. McKendry, “Energy production from biomass (part 1): overview of biomass,” Bioresource Technology, vol. 83, pp. 37-46, May 2002. doi:10.1016/S0960-8524(01)00118-3
  • [42] F.X. Collard, and J. Blin, “A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin,” Renewable and Sustainable Energy Reviews, vol. 38, pp. 594-608, October 2014. doi:10.1016/j.rser.2014.06.013
  • [43] B. Yuca, Ş. Kurt., M. Korkmaz and S. Aysal, “Determination of the influence of some boric acid added adhesives on combustion properties of beech wood,” Kastamonu University Journal of Forestry Faculty, vol.14, pp. 182-190, March 2014.
  • [44] A. A. Klyosov, “Wood-plastic composites”. New Jersey: John Wiley & Sons, 2007.
  • [45] M. Akter, M. H. Uddin, and H. R. Anik “Plant fiber-reinforced polymer composites: a review on modification, fabrication, properties, and applications,” Polymer Bulletin, vol. 81, pp. 1-85, February 2024. Doi:10.1007/s00289-023-04733-5
  • [46] R. Prem Kumar, M. Muthukrishnan and A. Felix Sahayaraj, “Effect of hybridization on natural fiber reinforced polymer composite materials–A review,” Polymer Composites, vol. 44, pp.4459-4479, February 2023. doi:10.1002/pc.27489
  • [47] M. S. Mendis, P.A.U. Ishani, and R.U. Halwatura, “Impacts of chemical modification of wood on water absorption: a review,” Journal of the Indian Academy of Wood Science, vol.20, pp. 73-88, March 2023. doi:10.1007/s13196-023-00309-y
  • [48] P. Niemz, A. Teischinger, D. Sandberg, “Springer handbook of wood science and technology,” Heidelberg, Germany:, Springer, 2023.
  • [49] E. Sarıoğlu, E.A.Turhan, S. Karaz, B. Bengü, A. Biçer, T. Yarıcı, C. Erkey and E. Senses, E., “A facile method for cross-linking of methacrylated wood fibers for engineered wood composites,” Industrial Crops and Products, vol. 193, p.116296., March 2023. doi:10.1016/j.indcrop.2023.116296
  • [50] Y. Mohd Aref, R. Othaman, F. H. Anuar, K. Z. K. Ahmad, and A. Baharum,“Superhydrophobic modification of Sansevieria trifasciata natural fibres: a promising reinforcement for wood plastic composites,” Polymers, vol.15, 1-15, January 2023. doi:10.3390/polym15030594
  • [51] R Maguteeswaran, P. Prathap, S. Satheeshkumar and S. Madhu, “Effect of alkali treatment on novel natural fiber extracted from the stem of Lankaran acacia for polymer composite applications,” Biomass Conversion and Biorefinery, vol. 14, pp.8091-8091, April 2023. doi:10.1007/s13399-023-04189-7
  • [52] M. Johansson, M. Skrifvars, N.Kadi, and H. N. Dhakal, “Effect of lignin acetylation on the mechanical properties of lignin-poly-lactic acid biocomposites for advanced applications,” Industrial Crops and Products, vol.202, pp. 117049, October 2023. doi:10.1016/j.indcrop.2023.117049
  • [53] Y Liu, L. Guo, W. Wang, Y. Sun and H. Wang, “Modifying wood veneer with silane coupling agent for decorating wood fiber/high-density polyethylene composite,” Construction and Building Materials, vol. 224, pp.691-699. November 2019. doi:10.1016/j.conbuildmat.2019.07.090
  • [54] W. Harnnarongchai, J. Kaschta, D.W. Schubert, D. W. N. Sombatsompop, “Shear and elongational flow properties of peroxide‐modified wood/low‐density polyethylene composite melts,” Polymer composites, vol. 33, pp. 2084-2094, October 2012. doi:10.1002/pc.22351
  • [55] J. K. Kim and K. Pal, “Recent advances in the processing of wood-plastic composites,” Heidelberg, Holland: Springer, 2010.
  • [56] E. Yilmaz, “Çinko borat maddesinin odun plastik kompozitlerde antifungal etkisinin incelenmesi,” Msc. dissertation, Kahramanmaraş Sütçü İmam University., Kahramanmaraş, Türkiye, 2018.
  • [57] G. Yilmaz, “Termal işlem uygulanmış mısır saplarından üretilen odun plastik kompozitlerinin fiziksel ve mekanik özellikleri,” Msc. dissertation, Düzce University., Düzce, Türkiye, 2020.
  • [58] M. Z, Khan, S. K. Srivastava and M. K. Gupta, “A state-of-the-art review on particulate wood polymer composites: Processing, properties and applications,” Polymer Testing, vol. 89, pp.106721, September 2020. doi:10.1016/j.polymertesting.2020.106721
  • [59] S. K. Najafi, “Use of recycled plastics in wood plastic composites – A review,” Waste Management, vol.33, pp. 1898-1905, September 2013, doi:10.1016/j.wasman.2013.05.017
  • [60] A. Kaymakcı, N. Ayrılmışand T. Akbulut, “Dış cephe kaplamalarına ekolojik bir yaklaşım: ahşap polimer kompozitler” in 7. Ulusal Çatı & Cephe Sempozyumu, İstanbul, Türkiye,April 3-4, 2014. İstanbul, Türkiye [Online]. Available: https://catider.org.tr/pdf/sempozyum7/8_%20Bildiri%20kaymakci.pdf [Accessed: 12 June. 2023].
  • [61] M. Y. Çelik and E. Kılıç, “Bitkisel Kaynaklı Biyopolietilenin Biyokompozit Üretiminde ve Polimer Karışımlarında Kullanımı,” Journal of Textile Engineering, vol.27, pp. 197-215, September 2020. doi:10.7216/1300759920202711908
  • [62] J. Chen, Y. Wang, C. Gu, J. Liu, Y. Liu, M. Li, and Y. Lu, “Enhancement of the mechanical properties of basalt fiber-wood-plastic composites via maleic anhydride grafted high-density polyethylene (MAPE) addition,” Materials, vol.6, pp.2483-2496, June 2013. doi:10.3390/ma6062483
  • [63] Y. Kazemi, A. Cloutier, and D. Rodrigue, “Mechanical and morphological properties of wood plastic composites based on municipal plastic waste,” Polymer composites, vol.34, pp. 487-493, March 2013. doi:10.1002/pc.22442
  • [64] R. M. Rowell, “Advances and challenges of wood polymer composites,” in Proceedings of the 8th Pacific Rim Bio-Based Composites Symposium, November 20-23, 2006, USA .[Online]. Available: https://www.fpl.fs.usda.gov/documnts/pdf2006/fpl_2006_rowell001.pdf [Accessed: 10 June. 2024].
  • [65] A. H. Elsheikh, H. Panchal, S. Shanmugan, T. Muthuramalingam, A.M El-Kassas and B. Ramesh, “Recent progresses in wood-plastic composites: Pre-processing treatments, manufacturing techniques, recyclability and eco-friendly assessment,” Cleaner Engineering and Technology, vol. 8, pp. 100450, June 2022. doi:10.1016/j.clet.2022.100450
  • [66] N. Ayrilmis, S. Jarusombuti, V. Fueangvivat, and P. Bauchongkol, “Effect of thermal-treatment of wood fibres on properties of flat-pressed wood plastic composites,” Polymer Degradation and Stability, vol. 96, pp. 818-822, May 2011. doi:10.1016/j.polymdegradstab.2011.02.005
  • [67] P. H. G. Cademartori, P. S., dos Santos, L. Serrano, J. Labidi and D. A. Gatto, “Effect of thermal treatment on physicochemical properties of Gympie messmate wood,” Industrial Crops and Products, vol. 45, pp. 360-366. February 2013. doi:10.1016/j.indcrop.2012.12.048
  • [68] J. Follrich, U. Mueller, W. Gindl, and N. Mundigler, “Effects of long-term storage on the mechanical characteristics of wood plastic composites produced from thermally modified wood fibers,” Journal of Thermoplastic Composite Materials, vol.23, pp.845-853, May 2010. doi:10.1177/0892705710369042
  • [69] T. Jiang, G. Zeng, and C.Hu, "Fabrication of highly filled wood plastic composite pallets with extrusion‐compression molding technique," Polymer Composites, vol. 41, pp. 2724-2731, March 2020. doi:10.1002/pc.25570
  • [70] D. J. Gardner, Y. Han and L. Wang, “Wood–Plastic Composite Technology,” Current Forestry Reports, vol 1, pp. 139-150, June 2015. doi:10.1007/s40725-015-0016-6
  • [71] S. Das, A.K. Saha, P. K. Choudhury, R. K. Basak, B. C. Mitra, T. Todd, S. Lang and R.M Rowell, “Effect of steam pretreatment of jute fiber on dimensional stability of jute composite,” Journal of Applied Polymer Science, 76, pp.1652-1661, March 2000. doi:10.1002/(SICI)1097-4628(20000613)76:11<3C1652::AID-APP6>3E3.0.CO;2-X
  • [72] H. Bayram, “Ekstrüzyon yönteminde sıcaklık, ekstrüzyon hızı ve sürtünme parametrelerinin profil kalitesine etkisinin araştırılması,” PhD.dissertation, Yıldız Teknik University., İstanbul, Türkiye, 2008.
  • [73] A. Gallos, G. Paës, F. Allais and J. Beaugrand, “Lignocellulosic fibers: a critical review of the extrusion process for enhancement of the properties of natural fiber composites,” RSC Advances, vol.7, pp. 34638-34654, July 2017. doi:10.1039/C7RA05240E,
  • [74] A. K. Pal, A. K. Mohanty and M. Misra, “Additive manufacturing technology of polymeric materials for customized products: recent developments and future prospective,” RSC Advances, vol.11, pp.36398-36438, November 2021. doi:10.1039/D1RA04060J
  • [75] Mitschang, P. and K. Hildebrandt, “Polymer and composite moulding technologies for automotive applications, in Advanced Materials in Automotive Engineering,” USA: Woodhead Publishing, 2012.
  • [76] O. Faruk and A. K. Bledzki, “Wood plastic composite: present and future in Wiley Encyclopedia of Composites,”2nd Edition, USA: John Wiley & Sons,2011.
  • [78) S. S. Raj, “Wood-plastic composite processing and mechanical characteristics—a brief literature review in Recent Advances in Manufacturing, Automation, Design and Energy Technologies,” Singapore: Springer Springer, 2021.
  • [78] M. Chandrasekar, K. Senthilkumar, T. S. M. Kumar, R. Sabarish and S. Siengchin, “Morphological characterization of the wood polymer composites in Wood Polymer Composites: Recent Advancements and Applications,” Singapore: Springer, 2021.
  • [79] R. Gogoi and G. Manik, “Mechanical properties of wood polymer composites,” in Wood Polymer Composites: Recent Advancements and Applications” Singapore: Springer, 2021.
  • [80] J. S. Neto, H. F. de Queiroz, R. A Aguiar and M.D. Banea, “A review on the thermal characterisation of natural and hybrid fiber composites,” Polymers, vol.13, pp.4425, December 2021. doi:10.3390/polym13244425
  • [81] N. Nurazzi, M. R. M. Asyraf, M. Rayung, M. N. F. Norrrahim, S.S. Shazleen, M. S. A. Rani, A. R. Shafi, H. A. Aisyah, M. H. M. Radzi, F. A. Sabaruddin, and R. A. Ilyas, “Thermogravimetric analysis properties of cellulosic natural fiber polymer composites: A review on influence of chemical treatments,” Polymers, vol.13, pp.2710, August 2021. doi:10.3390/polym13162710
  • [82] M. R. Sanjay, P. Madhu, M. Jawaid, P. Senthamaraikannan, S. Senthil and S. Pradeep, “Characterization and properties of natural fiber polymer composites: A comprehensive review,” Journal of Cleaner Production, vol. 172, pp. 566-581, January 2018. doi:10.1016/j.jclepro.2017.10.101
  • [83] E. Soury, A.H. Behravesh, E.R. Esfahani, and A. Zolfaghari, “Design, optimization and manufacturing of wood–plastic composite pallet,” Materials & Design, vol.30, pp. 4183-4191, December 2009. doi:10.1016/j.matdes.2009.04.035
  • [84] P. Mackenzie-Helnwein, J. Eberhardsteiner and H.A. Mang, “A multi-surface plasticity model for clear wood and its application to the finite element analysis of structural details,” Computational Mechanics, vol. 3, pp. 204-218, May 2003. doi: 10.1007/s00466-003-0423-6
  • [85] K. Aldaş and F. Şen, “Karma bağlantılı kompozit plaklarda farklı sıcaklıklar etkisiyle oluşan gerilmelerin analizi,” Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, vol.3, pp.21-30, June 2012.
  • [86] T. Dursun and M. Özbay, “Tabakalı kompozit levhalarda hasar ilerleme modellemesi,” Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol.23, pp. 65-69, August 2008.
  • [87] M. Alhijazi, Q. Zeeshan, Z. Qin, B. Safaei and M. Asmael, “Finite element analysis of natural fibers composites: A review,” Nanotechnology Reviews, vol.9, pp. 853-875, September 2020. doi:10.1515/ntrev-2020-0069
  • [88] J. Naveen, M. Jawaid, P. Amuthakkannan, M. Chandrasekar, “Mechanical and physical properties of sisal and hybrid sisal fiber-reinforced polymer composites in Mechanical and physical testing of biocomposites, fibre-reinforced composites and hybrid composites,” USA: Woodhead Publishing, 2019.
  • [89] A. Mujtaba, F. Islam, P. Kaeding, T. Lindemann, B. Gangadhara Prusty, “Machine-learning based process monitoring for automated composites manufacturing,” Journal of Intelligent Manufacturing, pp. 1-16, December 2023. doi:10.1007/s10845-023-02282-2 S
  • [90] Altarazi, S., R. Allaf, and F. Alhindawi, “Machine Learning Models for Predicting and Classifying the Tensile Strength of Polymeric Films Fabricated via Different Production Processes,” Materials, vol.12, pp.1475, May 2019. doi:10.3390/ma12091475
  • [91] C. Joo, H. Park, H. Kwon, J. Lim, E. Shin, H. Cho, and J. Kim, “Machine learning approach to predict physical properties of polypropylene composites: Application of MLR, DNN, and random forest to industrial data,” Polymers, vol.14, pp.3500, August 2022. doi:10.3390/polym14173500
  • [92] A. Sharma, T. Mukhopadhyay, S.M. Rangappa, S. Siengchin, and V. Kushvaha, “Advances in computational intelligence of polymer composite materials: machine learning assisted modeling, analysis and design,” Archives of Computational Methods in Engineering, vol.29, pp.3341-3385, January 2022. doi:10.1007/s11831-021-09700-9

Sürdürülebilir Ahşap Plastik Kompozit Malzemeler: Hammaddeler, Yapısal Özellikler, Üretim Süreçleri ve Güncel Eğilimler

Yıl 2024, Cilt: 10 Sayı: 2, 264 - 280, 31.08.2024

Öz

Teknolojik gelişmelere paralel olarak, ucuz, fonksiyonel ve sürdürülebilir malzemelere olan ihtiyaç gün geçtikçe daha artmaktadır. Bu noktada, geleneksel polimer matris kompozitlere oranla hem ekonomik de çevresel yönden pek çok avantaj sağlayan ahşap kompozit malzemeler, farklı mühendislik uygulamalarında işlevselliklerinden ötürü yoğun bir ilgi çekmektedir. Bu çalışmada, sürdürülebilirlik analizi öncesinde fonksiyonel ahşap plastik kompozitlerin yapısal özellikleri incelenmiş ve bu malzemelerin kullanım alanları değerlendirilerek güncel pazar analizi yapılmıştır. Ayrıca bu malzemelerin üretim yöntemleri hakkında bilgiler sunularak, malzeme özelliklerinin geliştirilmesine yönelik olarak kullanılabilecek yaklaşımlar değerlendirilmiştir. Yapılan literatür taraması ile bu kompozitlerin güncel gelişimi ve malzeme özelliklerinin geliştirilmesi konularında ulaşılan bütünleşik bilgiler derlenmiştir.

Proje Numarası

2022-01.BŞEÜ.03-07

Kaynakça

  • [1] T. W. Clyne and D. Hull, An introduction to composite materials, 3rd Edition, UK: Cambridge University Press, 2019.
  • [2] A. Thule and R. Shanks, Natural fibre composites: materials, processes and properties, USA: Woodhead Publishing, 2014.
  • [3] H. Ehrlich, D. Janussen, P.Simon, V. V. Bazhenov, N. P. Shapkin, C. Erler, M. Mertig, R. Born, S. Heinemann, T. Hanke and H. Worch,”Nanostructural organization of naturally occurring composites—part II: silica-chitin-based biocomposites,” Journal of Nanomaterials, vol. 2008, pp. 1-8, February 2008. doi:10.1155/2008/670235
  • [4] S. Kangishwar, N. Radhika, A.A. Sheik, A. Chavali and S. Hariharan, “A comprehensive review on polymer matrix composites: material selection, fabrication, and application,” Polymer Bulletin, vol.80, pp.47-87, January 2022. doi:10.1007/s00289-022-04087-4
  • [5] D. K. Hale, “The physical properties of composite materials,” Journal of Materials Science, vol.11, pp. 2105-2141, November 1976. doi:10.1007/PL00020339
  • [6] G. Özsin, M. Kılıç, Ç. Kırbıyık Kurukavak, E. Varol, “Thermal Characteristics, Stability, and Degradation of PVC Composites and Nanocomposites,” in: H. A. Sabu, T. (eds) Poly(Vinyl Chloride) Based Composites and Nanocomposites. Engineering Materials. Cham, Switzerland: Springer, 2024.
  • [7] D. Kumlutaş, İ.H. Tavman and M. Turhan Çoban, “Thermal conductivity of particle filled polyethylene composite materials,” Composites Science and Technology, vol. 63, pp. 113-117, January 2003. doi:10.1016/S0266-3538(02)00194-X
  • [8] S. Dixit, R. Goel, A. Dubey, P. R. Shivhare and T. Bhalavi, “Natural fibre reinforced polymer composite materials-A review,” Polymers from Renewable Resources, vol.8, pp. 71-78, May 2017. Doi: 10.1177/204124791700800203
  • [9] D. K. Rajak, D. D. Pagar, R. Kumar, and C. I. Pruncu, “Recent progress of reinforcement materials: a comprehensive overview of composite materials,” Journal of Materials Research and Technology, vol.8, pp.6354-6374, November 2019. doi:10.1016/j.jmrt.2019.09.068
  • [10] A.K. Sharma, R. Bhandari, A. Aherwar and R. Rimašauskienė, “Matrix materials used in composites: A comprehensive study,” Materials Today: Proceedings, vol.21, pp.1559-1562, November 2020. doi:10.1016/j.matpr.2019.11.086
  • [11] M. De Araújo, “Natural and man-made fibres: physical and mechanical properties. In Fibrous and composite materials for civil engineering applications,” USA: Woodhead Publishing, 2014.
  • [12] D. C. Davis, J. W. Wilkerson, J. Zhu and D. O. Ayewah, “Improvements in mechanical properties of a carbon fiber epoxy composite using nanotube science and technology,” Composite Structures, vol.92, pp.2653-2662. October 2010. doi:10.1016/j.compstruct.2010.03.019
  • [13] S. S. Wicks, R. G.de Villoria, and B. L. Wardle, “Interlaminar and intralaminar reinforcement of composite laminates with aligned carbon nanotubes,” Composites Science and Technology, vol.70, pp.20-28, January 2010. doi:10.1016/j.compscitech.2009.09.001
  • [14] R. Teti, “Machining of Composite Materials,” CIRP Annals, vol.51, pp. 611-634, July 2002. doi:10.1016/S0007-8506(07)61703-X
  • [15] E. Omanović-Mikličanin, A. Badnjević, A., A. Kazlagić and M. Hajlovac, “Nanocomposites: A brief review,” Health and Technology, vol.10, pp.51-59, January 2020. doi:10.1007/s12553-019-00380-x
  • [16] Singh, S. and Singh, S., Fabrication and Machining of Advanced Materials and Composites, USA: CRC Press, 2022.
  • [17] B. C. Ray, “Temperature effect during humid ageing on interfaces of glass and carbon fibers reinforced epoxy composites,” Journal of Colloid and Interface Science, vol. 298, pp. 111-117, June 2006. doi:10.1016/j.jcis.2005.12.023
  • [18] M. Mukherjee, C.K. Das and A.P. Kharitonov, “Fluorinated and oxyfluorinated short Kevlar fiber‐reinforced ethylene propylene polymer,” Polymer Composites, vol.27, pp. 205-212, March 2006. doi:10.1002/pc.20195
  • [19] S.D. Thoppul, J. Finegan, and R.F. Gibson, “Mechanics of mechanically fastened joints in polymer–matrix composite structures – A review,” Composites Science and Technology, vol.69, pp. 301-329, March 2009. doi:10.1016/j.compscitech.2008.09.037
  • [20] M. R. Wisnom, M. Gigliotti, N. Ersoy, M. Campbell, and K.D. Potter, “Mechanisms generating residual stresses and distortion during manufacture of polymer–matrix composite structures,” Composites Part A: Applied Science and Manufacturing, vol.37, pp.522-529. April 2006. doi:10.1016/j.compositesa.2005.05.019,
  • [21] M. Kutz, Mechanical Engineers'Handbook, NJ: Wiley 2015.
  • [22] S. K. Najafi, “Use of recycled plastics in wood plastic composites–A review,” Waste management, vol.33, pp. 1898-1905, September 2013. doi:10.1016/j.wasman.2013.05.017 [23] M. J. Taufiq, M.R. Mansor, and Z. Mustafa, “Characterisation of wood plastic composite manufactured from kenaf fibre reinforced recycled-unused plastic blend,” Composite Structures, vol.189, pp. 510-515, April 2018. doi:10.1016/j.compstruct.2018.01.090
  • [24] K. Karakuş, “Üniversitemizdeki polietilen ve polipropilen atıkların polimer kompozit üretiminde değerlendirilmesi,” MSc. Dissertation, Kahramanmaraş Sütçü İmam University,, Kahramanmaraş, Türkiye, 2008.
  • [25] A. Ashori, “Wood–plastic composites as promising green-composites for automotive industries!,” Bioresource Technology, vol.99, pp. 4661-4667, July 2008. doi:10.1016/j.biortech.2007.09.043
  • [26] Fortune Business Insights. “Wood Plastic Composite Market Size, Share & Industry Analysis, By Material (Polyethylene, Polypropylene, Polyvinyl Chloride and Others), By Application (Decking, Automotive, Sliding & fencing, Technical Application, Furniture, Consumer Goods and Others), and Regional Forecast, 2020-2027”. Available: https://www.fortunebusinessinsights.com/enquiry/request-sample-pdf/wood-plastic-composite-market-102821. [Accessed: December 12, 2022].
  • [27] Precedence Research. “Wood plastic composites”. Available: https://www.grandviewresearch.com/industry-analysis/wood-plastic-composites-market . [Accessed: December 7, 2022].
  • [28] Google Analytics. “Google Analytics 2023”. Available: https://analytics.google.com/analytics/web/. [Accessed: December 10, 2023].
  • [29] Google Patents, “Google Patents 2023. Available: https://www.google.com/patents. [Accessed: December 14 2023].
  • [30] Clirivate, “Web of Science 2022”. 2023, Available: https://clarivate.com/. [Accessed: December 14 2023].
  • [31] Y. Feng, H. Hao, H. Lu, C. L. Chow, and D. Lau, “Exploring the development and applications of sustainable natural fiber composites: A review from a nanoscale perspective,” Composites Part B: Engineering, vol. 276, pp.111369, May 2024. doi:10.1016/j.compositesb.2024.111369
  • [32] G. Martins, F. Antunes, A. Mateus, A. and C. Malça, “Optimization of a wood plastic composite for architectural applications,” Procedia Manufacturing, vol.12, pp.203-220, September 2017. doi:10.1016/j.promfg.2017.08.025
  • [33] A. Jacob, “WPC industry focuses on performance and cost,” Reinforced Plastics, vol. 50, pp. 32-33, May 2006. doi:10.1016/S0034-3617(06)71010-4
  • [34] A.K., Bledzki, P. Franciszczak, Z. Osman, and M. Elbadawi, “Polypropylene biocomposites reinforced with softwood, abaca, jute, and kenaf fibers,” Industrial Crops and Products, vol.70, pp.91-99, August 2015. doi:10.1016/j.indcrop.2015.03.013
  • [35] L. Kristak, I. Kubovský, and R. Réh, “New challenges in wood and wood-based materials,” Polymers, vol. 13, pp.1-5, July 2021. doi:10.3390/polym13152538
  • [36] A. Gubana, and M. Melotto, “Experimental tests on wood-based in-plane strengthening solutions for the seismic retrofit of traditional timber floors,” Construction and Building Materials, vol. 191, pp. 290-299, December 2018. doi:10.1016/j.conbuildmat.2018.09.177
  • [37] G. Pritchard, “Two technologies merge: wood plastic composites,” Plastics, Additives and Compounding, vol.6, , pp. 18-21, July 2004. doi:10.1016/S1464-391X(04)00234-X
  • [38] M. Asif, “Sustainability of timber, wood and bamboo in construction, in Sustainability of Construction Materials,” Cambridge, UK: Woodhead Publishing, 2009.
  • [39] A. Faik, “Plant Cell Wall Structure-Pretreatment,” the Critical Relationship in Biomass Conversion to Fermentable Sugars. In: Green Biomass Pretreatment for Biofuels Production” Dordrecht, HollandSpringer: Dordrecht, Holland, Springer, 2013.
  • [40] D. N. S. Hon and N. Shiraishi, “Wood and Cellulosic Chemistry Revised, and Expanded”. London, UK: CRC Press, 2000.
  • [41] P. McKendry, “Energy production from biomass (part 1): overview of biomass,” Bioresource Technology, vol. 83, pp. 37-46, May 2002. doi:10.1016/S0960-8524(01)00118-3
  • [42] F.X. Collard, and J. Blin, “A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin,” Renewable and Sustainable Energy Reviews, vol. 38, pp. 594-608, October 2014. doi:10.1016/j.rser.2014.06.013
  • [43] B. Yuca, Ş. Kurt., M. Korkmaz and S. Aysal, “Determination of the influence of some boric acid added adhesives on combustion properties of beech wood,” Kastamonu University Journal of Forestry Faculty, vol.14, pp. 182-190, March 2014.
  • [44] A. A. Klyosov, “Wood-plastic composites”. New Jersey: John Wiley & Sons, 2007.
  • [45] M. Akter, M. H. Uddin, and H. R. Anik “Plant fiber-reinforced polymer composites: a review on modification, fabrication, properties, and applications,” Polymer Bulletin, vol. 81, pp. 1-85, February 2024. Doi:10.1007/s00289-023-04733-5
  • [46] R. Prem Kumar, M. Muthukrishnan and A. Felix Sahayaraj, “Effect of hybridization on natural fiber reinforced polymer composite materials–A review,” Polymer Composites, vol. 44, pp.4459-4479, February 2023. doi:10.1002/pc.27489
  • [47] M. S. Mendis, P.A.U. Ishani, and R.U. Halwatura, “Impacts of chemical modification of wood on water absorption: a review,” Journal of the Indian Academy of Wood Science, vol.20, pp. 73-88, March 2023. doi:10.1007/s13196-023-00309-y
  • [48] P. Niemz, A. Teischinger, D. Sandberg, “Springer handbook of wood science and technology,” Heidelberg, Germany:, Springer, 2023.
  • [49] E. Sarıoğlu, E.A.Turhan, S. Karaz, B. Bengü, A. Biçer, T. Yarıcı, C. Erkey and E. Senses, E., “A facile method for cross-linking of methacrylated wood fibers for engineered wood composites,” Industrial Crops and Products, vol. 193, p.116296., March 2023. doi:10.1016/j.indcrop.2023.116296
  • [50] Y. Mohd Aref, R. Othaman, F. H. Anuar, K. Z. K. Ahmad, and A. Baharum,“Superhydrophobic modification of Sansevieria trifasciata natural fibres: a promising reinforcement for wood plastic composites,” Polymers, vol.15, 1-15, January 2023. doi:10.3390/polym15030594
  • [51] R Maguteeswaran, P. Prathap, S. Satheeshkumar and S. Madhu, “Effect of alkali treatment on novel natural fiber extracted from the stem of Lankaran acacia for polymer composite applications,” Biomass Conversion and Biorefinery, vol. 14, pp.8091-8091, April 2023. doi:10.1007/s13399-023-04189-7
  • [52] M. Johansson, M. Skrifvars, N.Kadi, and H. N. Dhakal, “Effect of lignin acetylation on the mechanical properties of lignin-poly-lactic acid biocomposites for advanced applications,” Industrial Crops and Products, vol.202, pp. 117049, October 2023. doi:10.1016/j.indcrop.2023.117049
  • [53] Y Liu, L. Guo, W. Wang, Y. Sun and H. Wang, “Modifying wood veneer with silane coupling agent for decorating wood fiber/high-density polyethylene composite,” Construction and Building Materials, vol. 224, pp.691-699. November 2019. doi:10.1016/j.conbuildmat.2019.07.090
  • [54] W. Harnnarongchai, J. Kaschta, D.W. Schubert, D. W. N. Sombatsompop, “Shear and elongational flow properties of peroxide‐modified wood/low‐density polyethylene composite melts,” Polymer composites, vol. 33, pp. 2084-2094, October 2012. doi:10.1002/pc.22351
  • [55] J. K. Kim and K. Pal, “Recent advances in the processing of wood-plastic composites,” Heidelberg, Holland: Springer, 2010.
  • [56] E. Yilmaz, “Çinko borat maddesinin odun plastik kompozitlerde antifungal etkisinin incelenmesi,” Msc. dissertation, Kahramanmaraş Sütçü İmam University., Kahramanmaraş, Türkiye, 2018.
  • [57] G. Yilmaz, “Termal işlem uygulanmış mısır saplarından üretilen odun plastik kompozitlerinin fiziksel ve mekanik özellikleri,” Msc. dissertation, Düzce University., Düzce, Türkiye, 2020.
  • [58] M. Z, Khan, S. K. Srivastava and M. K. Gupta, “A state-of-the-art review on particulate wood polymer composites: Processing, properties and applications,” Polymer Testing, vol. 89, pp.106721, September 2020. doi:10.1016/j.polymertesting.2020.106721
  • [59] S. K. Najafi, “Use of recycled plastics in wood plastic composites – A review,” Waste Management, vol.33, pp. 1898-1905, September 2013, doi:10.1016/j.wasman.2013.05.017
  • [60] A. Kaymakcı, N. Ayrılmışand T. Akbulut, “Dış cephe kaplamalarına ekolojik bir yaklaşım: ahşap polimer kompozitler” in 7. Ulusal Çatı & Cephe Sempozyumu, İstanbul, Türkiye,April 3-4, 2014. İstanbul, Türkiye [Online]. Available: https://catider.org.tr/pdf/sempozyum7/8_%20Bildiri%20kaymakci.pdf [Accessed: 12 June. 2023].
  • [61] M. Y. Çelik and E. Kılıç, “Bitkisel Kaynaklı Biyopolietilenin Biyokompozit Üretiminde ve Polimer Karışımlarında Kullanımı,” Journal of Textile Engineering, vol.27, pp. 197-215, September 2020. doi:10.7216/1300759920202711908
  • [62] J. Chen, Y. Wang, C. Gu, J. Liu, Y. Liu, M. Li, and Y. Lu, “Enhancement of the mechanical properties of basalt fiber-wood-plastic composites via maleic anhydride grafted high-density polyethylene (MAPE) addition,” Materials, vol.6, pp.2483-2496, June 2013. doi:10.3390/ma6062483
  • [63] Y. Kazemi, A. Cloutier, and D. Rodrigue, “Mechanical and morphological properties of wood plastic composites based on municipal plastic waste,” Polymer composites, vol.34, pp. 487-493, March 2013. doi:10.1002/pc.22442
  • [64] R. M. Rowell, “Advances and challenges of wood polymer composites,” in Proceedings of the 8th Pacific Rim Bio-Based Composites Symposium, November 20-23, 2006, USA .[Online]. Available: https://www.fpl.fs.usda.gov/documnts/pdf2006/fpl_2006_rowell001.pdf [Accessed: 10 June. 2024].
  • [65] A. H. Elsheikh, H. Panchal, S. Shanmugan, T. Muthuramalingam, A.M El-Kassas and B. Ramesh, “Recent progresses in wood-plastic composites: Pre-processing treatments, manufacturing techniques, recyclability and eco-friendly assessment,” Cleaner Engineering and Technology, vol. 8, pp. 100450, June 2022. doi:10.1016/j.clet.2022.100450
  • [66] N. Ayrilmis, S. Jarusombuti, V. Fueangvivat, and P. Bauchongkol, “Effect of thermal-treatment of wood fibres on properties of flat-pressed wood plastic composites,” Polymer Degradation and Stability, vol. 96, pp. 818-822, May 2011. doi:10.1016/j.polymdegradstab.2011.02.005
  • [67] P. H. G. Cademartori, P. S., dos Santos, L. Serrano, J. Labidi and D. A. Gatto, “Effect of thermal treatment on physicochemical properties of Gympie messmate wood,” Industrial Crops and Products, vol. 45, pp. 360-366. February 2013. doi:10.1016/j.indcrop.2012.12.048
  • [68] J. Follrich, U. Mueller, W. Gindl, and N. Mundigler, “Effects of long-term storage on the mechanical characteristics of wood plastic composites produced from thermally modified wood fibers,” Journal of Thermoplastic Composite Materials, vol.23, pp.845-853, May 2010. doi:10.1177/0892705710369042
  • [69] T. Jiang, G. Zeng, and C.Hu, "Fabrication of highly filled wood plastic composite pallets with extrusion‐compression molding technique," Polymer Composites, vol. 41, pp. 2724-2731, March 2020. doi:10.1002/pc.25570
  • [70] D. J. Gardner, Y. Han and L. Wang, “Wood–Plastic Composite Technology,” Current Forestry Reports, vol 1, pp. 139-150, June 2015. doi:10.1007/s40725-015-0016-6
  • [71] S. Das, A.K. Saha, P. K. Choudhury, R. K. Basak, B. C. Mitra, T. Todd, S. Lang and R.M Rowell, “Effect of steam pretreatment of jute fiber on dimensional stability of jute composite,” Journal of Applied Polymer Science, 76, pp.1652-1661, March 2000. doi:10.1002/(SICI)1097-4628(20000613)76:11<3C1652::AID-APP6>3E3.0.CO;2-X
  • [72] H. Bayram, “Ekstrüzyon yönteminde sıcaklık, ekstrüzyon hızı ve sürtünme parametrelerinin profil kalitesine etkisinin araştırılması,” PhD.dissertation, Yıldız Teknik University., İstanbul, Türkiye, 2008.
  • [73] A. Gallos, G. Paës, F. Allais and J. Beaugrand, “Lignocellulosic fibers: a critical review of the extrusion process for enhancement of the properties of natural fiber composites,” RSC Advances, vol.7, pp. 34638-34654, July 2017. doi:10.1039/C7RA05240E,
  • [74] A. K. Pal, A. K. Mohanty and M. Misra, “Additive manufacturing technology of polymeric materials for customized products: recent developments and future prospective,” RSC Advances, vol.11, pp.36398-36438, November 2021. doi:10.1039/D1RA04060J
  • [75] Mitschang, P. and K. Hildebrandt, “Polymer and composite moulding technologies for automotive applications, in Advanced Materials in Automotive Engineering,” USA: Woodhead Publishing, 2012.
  • [76] O. Faruk and A. K. Bledzki, “Wood plastic composite: present and future in Wiley Encyclopedia of Composites,”2nd Edition, USA: John Wiley & Sons,2011.
  • [78) S. S. Raj, “Wood-plastic composite processing and mechanical characteristics—a brief literature review in Recent Advances in Manufacturing, Automation, Design and Energy Technologies,” Singapore: Springer Springer, 2021.
  • [78] M. Chandrasekar, K. Senthilkumar, T. S. M. Kumar, R. Sabarish and S. Siengchin, “Morphological characterization of the wood polymer composites in Wood Polymer Composites: Recent Advancements and Applications,” Singapore: Springer, 2021.
  • [79] R. Gogoi and G. Manik, “Mechanical properties of wood polymer composites,” in Wood Polymer Composites: Recent Advancements and Applications” Singapore: Springer, 2021.
  • [80] J. S. Neto, H. F. de Queiroz, R. A Aguiar and M.D. Banea, “A review on the thermal characterisation of natural and hybrid fiber composites,” Polymers, vol.13, pp.4425, December 2021. doi:10.3390/polym13244425
  • [81] N. Nurazzi, M. R. M. Asyraf, M. Rayung, M. N. F. Norrrahim, S.S. Shazleen, M. S. A. Rani, A. R. Shafi, H. A. Aisyah, M. H. M. Radzi, F. A. Sabaruddin, and R. A. Ilyas, “Thermogravimetric analysis properties of cellulosic natural fiber polymer composites: A review on influence of chemical treatments,” Polymers, vol.13, pp.2710, August 2021. doi:10.3390/polym13162710
  • [82] M. R. Sanjay, P. Madhu, M. Jawaid, P. Senthamaraikannan, S. Senthil and S. Pradeep, “Characterization and properties of natural fiber polymer composites: A comprehensive review,” Journal of Cleaner Production, vol. 172, pp. 566-581, January 2018. doi:10.1016/j.jclepro.2017.10.101
  • [83] E. Soury, A.H. Behravesh, E.R. Esfahani, and A. Zolfaghari, “Design, optimization and manufacturing of wood–plastic composite pallet,” Materials & Design, vol.30, pp. 4183-4191, December 2009. doi:10.1016/j.matdes.2009.04.035
  • [84] P. Mackenzie-Helnwein, J. Eberhardsteiner and H.A. Mang, “A multi-surface plasticity model for clear wood and its application to the finite element analysis of structural details,” Computational Mechanics, vol. 3, pp. 204-218, May 2003. doi: 10.1007/s00466-003-0423-6
  • [85] K. Aldaş and F. Şen, “Karma bağlantılı kompozit plaklarda farklı sıcaklıklar etkisiyle oluşan gerilmelerin analizi,” Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, vol.3, pp.21-30, June 2012.
  • [86] T. Dursun and M. Özbay, “Tabakalı kompozit levhalarda hasar ilerleme modellemesi,” Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol.23, pp. 65-69, August 2008.
  • [87] M. Alhijazi, Q. Zeeshan, Z. Qin, B. Safaei and M. Asmael, “Finite element analysis of natural fibers composites: A review,” Nanotechnology Reviews, vol.9, pp. 853-875, September 2020. doi:10.1515/ntrev-2020-0069
  • [88] J. Naveen, M. Jawaid, P. Amuthakkannan, M. Chandrasekar, “Mechanical and physical properties of sisal and hybrid sisal fiber-reinforced polymer composites in Mechanical and physical testing of biocomposites, fibre-reinforced composites and hybrid composites,” USA: Woodhead Publishing, 2019.
  • [89] A. Mujtaba, F. Islam, P. Kaeding, T. Lindemann, B. Gangadhara Prusty, “Machine-learning based process monitoring for automated composites manufacturing,” Journal of Intelligent Manufacturing, pp. 1-16, December 2023. doi:10.1007/s10845-023-02282-2 S
  • [90] Altarazi, S., R. Allaf, and F. Alhindawi, “Machine Learning Models for Predicting and Classifying the Tensile Strength of Polymeric Films Fabricated via Different Production Processes,” Materials, vol.12, pp.1475, May 2019. doi:10.3390/ma12091475
  • [91] C. Joo, H. Park, H. Kwon, J. Lim, E. Shin, H. Cho, and J. Kim, “Machine learning approach to predict physical properties of polypropylene composites: Application of MLR, DNN, and random forest to industrial data,” Polymers, vol.14, pp.3500, August 2022. doi:10.3390/polym14173500
  • [92] A. Sharma, T. Mukhopadhyay, S.M. Rangappa, S. Siengchin, and V. Kushvaha, “Advances in computational intelligence of polymer composite materials: machine learning assisted modeling, analysis and design,” Archives of Computational Methods in Engineering, vol.29, pp.3341-3385, January 2022. doi:10.1007/s11831-021-09700-9
Toplam 91 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Malzeme Mühendisliği (Diğer)
Bölüm Derleme
Yazarlar

Gözde Çolak 0000-0002-2170-4838

Gamzenur Özsin 0000-0001-5091-5485

Burçin Atılgan Türkmen 0000-0003-3220-3817

Proje Numarası 2022-01.BŞEÜ.03-07
Erken Görünüm Tarihi 12 Ağustos 2024
Yayımlanma Tarihi 31 Ağustos 2024
Gönderilme Tarihi 13 Mart 2024
Kabul Tarihi 31 Temmuz 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 10 Sayı: 2

Kaynak Göster

IEEE G. Çolak, G. Özsin, ve B. Atılgan Türkmen, “Sürdürülebilir Ahşap Plastik Kompozit Malzemeler: Hammaddeler, Yapısal Özellikler, Üretim Süreçleri ve Güncel Eğilimler”, GMBD, c. 10, sy. 2, ss. 264–280, 2024.

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY) 1366_2000-copia-2.jpg