Real-Time Ammunition Case Quality Control System Design
Year 2025,
Volume: 11 Issue: 2, 158 - 176, 31.08.2025
Kerem Albayrak
,
Adnan Akkurt
Abstract
This study aims to develop an automation system designed to enhance the quality control processes of ammunition cases of various calibers using a systematic design approach. Traditional quality control methods in ammunition manufacturing largely depend on human factors, which carry a high potential for error and limit efficiency. The aimed system utilizes advanced image processing algorithms integrated with mechanical and electronic components to perform quality control tasks at high speeds with nearly perfect accuracy. This significantly reduces human error, aiming for a more consistent and reliable control process. The system developed through this research is expected to make significant contributions to sectors that require high precision and reliability, such as the defense industry, where it can be integrated. It is anticipated that using this system in national projects will enhance overall production quality and safety standards. The integration of automation systems into industrial quality control processes is expected to set a new benchmark for ammunition production and quality control, raising awareness in other sectors as well.
Ethical Statement
No conflict of interest was declared by the authors.
Supporting Institution
Yeter Makina
Thanks
I would like to express my sincere gratitude to Yeter Makina for their valuable contributions and support in the realization of this study.
References
-
[1] NATO, "Standardization Agreements (STANAGs)," NATO Official Website, NATO Headquarters, Brussels, Belgium, 14 Oct. 2022. [Online]. Available: https://www.nato.int/cps/en/natohq/topics_69269.htm. [Accessed: 20 Apr. 2025].
-
[2] North Atlantic Treaty Organization Standardization Office, Multi-Calibre Manual of Proof and Inspection (M-CMOPI) for NATO Small Arms Ammunition (STANAG 4823). Brussels, Belgium: NSO, Oct. 2020.
-
[3] North Atlantic Treaty Organization Standardization Office, NATO 7.62mm Ammunition Design and Safety Criteria (STANAG 2310), Brussels, Belgium: NSO, 2018.
-
[4] North Atlantic Treaty Organization Army Armaments Group, Technical Performance Specification Providing for the Interchangeability of 5.56 mm × 45 Ammunition (AOP-4172), Brussels, Belgium: NAAG, 2020.
-
[5] North Atlantic Treaty Organization Standardization Office, AEP-97: Multi-Calibre Manual of Proof and Inspection (M-CMOPI) for NATO Small Arms Ammunition, Brussels, Belgium: NSO, 2020.
-
[6] A. Thamna, P. Srisungsitthisunti, and S. Dechjarem, “Real-time visual inspection and rejection machine for bullet production,” in Proc. of the 2018 2nd International Conference on Engineering Innovation (ICEI), pp. 13–17, Jul. 2018. doi:10.1109/icei18.2018.8448641
-
[7] A. Tellaeche and R. Arana, “Three-dimensional machine vision and machine-learning algorithms applied to quality control of percussion caps,” IET Computer Vision, vol. 5, no. 2, pp. 117–124, Mar. 2011. doi:10.1049/iet-cvi.2010.0019
-
[8] D. K. Moru and D. Borro, “A machine vision algorithm for Quality Control Inspection of Gears,” The International Journal of Advanced Manufacturing Technology, vol. 106, no. 1–2, pp. 105–123, Nov. 2019. doi:10.1007/s00170-019-04426-2
-
[9] B. Huang et al., “Research and implementation of machine vision technologies for Empty Bottle Inspection Systems,” Engineering Science and Technology, an International Journal, vol. 21, no. 1, pp. 159–169, Feb. 2018. doi:10.1016/j.jestch.2018.01.004
-
[10] Y. Wu, Y. Qin, Z. Wang, and L. Jia, “A UAV-based visual inspection method for rail surface defects,” Applied Sciences, vol. 8, no. 7, p. 1028, Jun. 2018. doi:10.3390/app8071028
-
[11] T. Tabata, T. Komuro, and M. Ishikawa, “Surface image synthesis of moving spinning cans using a 1,000-fps area scan camera,” Machine Vision and Applications, vol. 21, no. 5, pp. 643–652, Feb. 2010. doi:10.1007/s00138-010-0247-2
-
[12] G. Pahl and W. Beitz, Engineering Design: A Systematic Approach, Springer, 2014.
-
[13] H. Börklü and N. Top, “Sistematik tasarım yaklaşımı ile yeni bir zeytin hasat makinesi tasarımı,” Mühendislik Bilimleri ve Tasarım Dergisi, vol. 6, no. 4, pp. 659–664, Dec. 2018. doi:10.21923/jesd.423380
-
[14] D. Biçer, H. R. Börklü, and O. Erden, “Sistematik tasarım yaklaşımı ile yeni bir market arabasinin kavramsal tasarımı,” International Journal of 3D Printing Technologies and Digital Industry, vol. 5, no. 3, pp. 577–586, Dec. 2021. doi:10.46519/ij3dptdi.845858
-
[15] T. S. Kerk and M. A. Azlan, “Design of a vertical conveyor system for scrap rubber in FGV Felda Rubber Industry,” Research Progress in Mechanical and Manufacturing Engineering, vol. 2, no. 2, pp. 569–579, 2022. doi:10.30880/rpmme.2021.02.02.100
-
[16] F. Rosa and Rodiawan, “Designing Pepper Peeler machine with crusher system to support pepper processing in Archipelago,” in Proc. of the International Conference on Maritime and Archipelago (ICoMA 2018), Nov. 6–7, 2018, Bangka Belitung, Indonesia, pp. 237–241. doi:10.2991/icoma-18.2019.46
-
[17] G. Pahl, W. Beitz, G. Feldhusen, K. H. Grote, and H. R. Börklü, Mühendislik Tasarımı: Sistematik Yaklaşım, 1st ed., Hatiboğlu Yayınları, Ankara, Türkiye, 2010.
-
[18] Sims Machine and Controls Inc, "Centrifugal Feeder," U.S. Patent 5954185A, Sept. 16, 1997.
-
[19] S. Algan, Fişek Üretiminde Risklerin Tespiti ve Kimyasal Maruziyetin Değerlendirilmesi, Uzmanlık Tezi, T.C. Çalışma ve Sosyal Güvenlik Bakanlığı, İş Sağlığı ve Güvenliği Genel Müdürlüğü, Ankara, Türkiye, 2016.
Gerçek Zamanlı Mermi Kovanı Kalite Kontrol Sistemi Tasarımı
Year 2025,
Volume: 11 Issue: 2, 158 - 176, 31.08.2025
Kerem Albayrak
,
Adnan Akkurt
Abstract
Gerçekleştirilen çalışma; çeşitli kalibrede mühimmat kovanlarının kalite kontrol süreçlerini geliştirmek amacıyla tasarlanmış bir otomasyon sisteminin, sistematik tasarım yaklaşımı kullanılarak geliştirilmesini hedeflemektedir. Mühimmat üretimindeki geleneksel kalite kontrol yöntemlerinde büyük ölçüde insan faktörüne bağlı olarak hata potansiyeli taşımakta ve verimliliği sınırlamaktadır. Hedeflenen sistemde, kalite kontrol görevlerini yüksek hızlarda ve neredeyse mükemmel bir doğrulukla gerçekleştirmek için mekanik ve elektronik bileşenlere entegre edilmiş gelişmiş görüntü işleme algoritmaları kullanmaktadır. Böylece, insan faktörü önemli ölçüde azaltılarak, daha tutarlı ve güvenilir bir kontrol süreci hedeflenmiştir. Bu çalışma ile elde edilecek sistemin, yüksek hassasiyet ve güvenilirlik gerektiren savunma sanayi ve benzer sistemlerin entegre edilebileceği sektörlere önemli katkılarda bulunma potansiyeline sahip olduğu açıktır. Ulusal projelerde kullanılarak genel üretim kalitesi ve güvenlik standartlarını artırabileceğini öngörülmektedir. Endüstriyel kalite kontrol süreçlerine otomasyon sistemlerinin entegrasyonunun, mühimmat üretimi ve kalite kontrolü için yeni bir referans noktası oluşturması ve diğer sektörlerde farkındalık oluşturması beklenmektedir.
Ethical Statement
Yazarlar tarafından herhangi bir çıkar çatışması bildirilmemiştir.
Supporting Institution
Yeter Makina
Thanks
Bu çalışmanın gerçekleştirilmesinde değerli katkıları ve destekleri için Yeter Makina şirketine içten teşekkürlerimi sunarım.
References
-
[1] NATO, "Standardization Agreements (STANAGs)," NATO Official Website, NATO Headquarters, Brussels, Belgium, 14 Oct. 2022. [Online]. Available: https://www.nato.int/cps/en/natohq/topics_69269.htm. [Accessed: 20 Apr. 2025].
-
[2] North Atlantic Treaty Organization Standardization Office, Multi-Calibre Manual of Proof and Inspection (M-CMOPI) for NATO Small Arms Ammunition (STANAG 4823). Brussels, Belgium: NSO, Oct. 2020.
-
[3] North Atlantic Treaty Organization Standardization Office, NATO 7.62mm Ammunition Design and Safety Criteria (STANAG 2310), Brussels, Belgium: NSO, 2018.
-
[4] North Atlantic Treaty Organization Army Armaments Group, Technical Performance Specification Providing for the Interchangeability of 5.56 mm × 45 Ammunition (AOP-4172), Brussels, Belgium: NAAG, 2020.
-
[5] North Atlantic Treaty Organization Standardization Office, AEP-97: Multi-Calibre Manual of Proof and Inspection (M-CMOPI) for NATO Small Arms Ammunition, Brussels, Belgium: NSO, 2020.
-
[6] A. Thamna, P. Srisungsitthisunti, and S. Dechjarem, “Real-time visual inspection and rejection machine for bullet production,” in Proc. of the 2018 2nd International Conference on Engineering Innovation (ICEI), pp. 13–17, Jul. 2018. doi:10.1109/icei18.2018.8448641
-
[7] A. Tellaeche and R. Arana, “Three-dimensional machine vision and machine-learning algorithms applied to quality control of percussion caps,” IET Computer Vision, vol. 5, no. 2, pp. 117–124, Mar. 2011. doi:10.1049/iet-cvi.2010.0019
-
[8] D. K. Moru and D. Borro, “A machine vision algorithm for Quality Control Inspection of Gears,” The International Journal of Advanced Manufacturing Technology, vol. 106, no. 1–2, pp. 105–123, Nov. 2019. doi:10.1007/s00170-019-04426-2
-
[9] B. Huang et al., “Research and implementation of machine vision technologies for Empty Bottle Inspection Systems,” Engineering Science and Technology, an International Journal, vol. 21, no. 1, pp. 159–169, Feb. 2018. doi:10.1016/j.jestch.2018.01.004
-
[10] Y. Wu, Y. Qin, Z. Wang, and L. Jia, “A UAV-based visual inspection method for rail surface defects,” Applied Sciences, vol. 8, no. 7, p. 1028, Jun. 2018. doi:10.3390/app8071028
-
[11] T. Tabata, T. Komuro, and M. Ishikawa, “Surface image synthesis of moving spinning cans using a 1,000-fps area scan camera,” Machine Vision and Applications, vol. 21, no. 5, pp. 643–652, Feb. 2010. doi:10.1007/s00138-010-0247-2
-
[12] G. Pahl and W. Beitz, Engineering Design: A Systematic Approach, Springer, 2014.
-
[13] H. Börklü and N. Top, “Sistematik tasarım yaklaşımı ile yeni bir zeytin hasat makinesi tasarımı,” Mühendislik Bilimleri ve Tasarım Dergisi, vol. 6, no. 4, pp. 659–664, Dec. 2018. doi:10.21923/jesd.423380
-
[14] D. Biçer, H. R. Börklü, and O. Erden, “Sistematik tasarım yaklaşımı ile yeni bir market arabasinin kavramsal tasarımı,” International Journal of 3D Printing Technologies and Digital Industry, vol. 5, no. 3, pp. 577–586, Dec. 2021. doi:10.46519/ij3dptdi.845858
-
[15] T. S. Kerk and M. A. Azlan, “Design of a vertical conveyor system for scrap rubber in FGV Felda Rubber Industry,” Research Progress in Mechanical and Manufacturing Engineering, vol. 2, no. 2, pp. 569–579, 2022. doi:10.30880/rpmme.2021.02.02.100
-
[16] F. Rosa and Rodiawan, “Designing Pepper Peeler machine with crusher system to support pepper processing in Archipelago,” in Proc. of the International Conference on Maritime and Archipelago (ICoMA 2018), Nov. 6–7, 2018, Bangka Belitung, Indonesia, pp. 237–241. doi:10.2991/icoma-18.2019.46
-
[17] G. Pahl, W. Beitz, G. Feldhusen, K. H. Grote, and H. R. Börklü, Mühendislik Tasarımı: Sistematik Yaklaşım, 1st ed., Hatiboğlu Yayınları, Ankara, Türkiye, 2010.
-
[18] Sims Machine and Controls Inc, "Centrifugal Feeder," U.S. Patent 5954185A, Sept. 16, 1997.
-
[19] S. Algan, Fişek Üretiminde Risklerin Tespiti ve Kimyasal Maruziyetin Değerlendirilmesi, Uzmanlık Tezi, T.C. Çalışma ve Sosyal Güvenlik Bakanlığı, İş Sağlığı ve Güvenliği Genel Müdürlüğü, Ankara, Türkiye, 2016.