Research Article
BibTex RIS Cite

Ab-initio Calculations of the Half-metallic Ferromagnetic New Variant Perovskites Li2CrO6 and Li2CuO6

Year 2023, , 909 - 918, 01.06.2023
https://doi.org/10.35378/gujs.1073140

Abstract

The half-metallic calculations of new variant perovskites Li2CrO6 and Li2CuO6 were carried out by using WIEN2k computational code. First, the ferromagnetic (FM) and non-magnetic (NM) phases were compared, and FM phases were obtained energetically more stable. The equilibrium lattice constants were obtained as 7.63 Å and 7.66 Å for Li2CrO6 and Li2CuO6, respectively. Second, the electronic calculations were performed, and the semiconduction properties were seen in spin-up states while spin-down states showed metallic nature. The band gaps were obtained as 1.806 eV and 1.177 eV for Li2CrO6 and Li2CuO6, respectively. Since variant perovskites Li2CrO6 and Li2CuO6 showed 100% spin polarizations, these were obtained as true half-metallic ferromagnetic materials. Then the total magnetic moments were obtained as 4.00 μB/f.u., 5.00 μB/f.u. When both the electronic and magnetic properties of the compounds are examined, the variant perovskites Li2CrO6 and Li2CuO6 are suitable materials for spintronics applications.

References

  • [1] Misra, P.K., “Chapter 11 – Spintronics”, Physics of Condensed Matter, 339-368, (2012).
  • [2] Hirohata, A., Yamada, K., Nakatani, Y., Prejbeanu, I.L., Dieny, B., Pirro, P., Hillebrands, B., “Review on spintronics: Principles and device applications”, Journal of Magnetism and Magnetic Materials, 509: 166711, (2020).
  • [3] El-Ghazaly, A., Gorchon, J., Wilson, R.B., Pattabi, A., Bokor, J., “Progress towards ultrafast spintronics applications”, Journal of Magnetism and Magnetic Materials, 502: 166478, (2020).
  • [4] Jullière, M., “Tunneling between ferromagnetic films”, Physics Letters A, 54: 225, (1975).
  • [5] Baibich, M.N., Broto, J.M., Fert, A., Nguyen Van Dau, F., Petroff, F., Etienne, P., Creuzet, G., Friederich, A., Chazelas, J., “Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices”, Physical Review Letters, 61: 2472, (1988).
  • [6] Binasch, G., Grünberg, P., Saurenbach, F., Zinn, W., “Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange”, Physical Review B, 39: 4828(R), (1989).
  • [7] Johnson, M., “Spin accumulation in gold films”, Physical Review Letters, 70: 2142, (1993).
  • [8] Liu, C., Shen, T., Wu, H.B., Feng, Y., Chen, J.J., “Applications of magneto-strictive, magneto-optical, magnetic fluid materials in optical fiber current sensors and optical fiber magnetic field sensors: A review”, Optical Fiber Technology, 65: 102634, (2021).
  • [9] Zhang, Y., Zhang, W., Ning, M., Chen, L., Li, H., “Tuning the magnetism of L10-MnGa films by Pt doping”, Applied Surface Science, 542: 148585, (2021).
  • [10] Quiroz, H.P., Calderon, J.A., Dussan, A., “Magnetic switching control in Co/TiO2 bilayer and TiO2:Co thin films for Magnetic-Resistive Random Access Memories (M-RRAM)”, Journal of Alloys and Compounds, 840: 155674, (2020).
  • [11] Nguyen, T.D., Ehrenfreund, E., Vardeny, Z.V., “The spin-polarized organic light emitting diode”, Synthetic Metals, 173: 16-21, (2013).
  • [12] Mondal, R.K., Adhikari, S., Chatterjee, V., Pal, S., “Recent advances and challenges in AlGaN-based ultra-violet light emitting diode technologies”, Materials Research Bulletin, 140: 111258, (2021).
  • [13] Matsushita, M.M., Kawakami, H., Okabe, E., Kouka, H., Kawada, Y., Sugawara, T., “A field-effect transistor consists of spin-polarized TTF-based donor”, Polyhedron, 24: 2870-2875, (2005).
  • [14] De Groot, R.A., Mueller, F.M., van Engen, P.G., Buschow, K.H.J., “New class of materials: half-metallic ferromagnets”, Physical Review Letters, 50: 2024-2027, (1983).
  • [15] Özdemir, E.G., Doğruer, S., “The electronic, half-metallic, elastic, and magnetic properties of new PtWZ (Z = In, Tl, Sn, and Pb) half-Heusler alloys via GGA and GGA+mBJ methods”, Physica Scripta, 96: 125869, (2021).
  • [16] Özdemir, E.G., Doğruer, S., Özcan, A., Merdan, Z., “The effect of structural changes on half-metallic, elastic and magnetic properties of the FeWGa half-Heusler compound via first-principles studies”, Journal of Magnetism and Magnetic Materials, 546: 168872, (2022).
  • [17] Chavan, K.T., Chandra, S., Kshirsagar, A., “Half-metallicity in smallest cage-like cluster of CdTe with doping of transition metal atoms”, Materials Today Communications, 30: 103104, (2022).
  • [18] Bounouala, Z., Goumrhar, F., Drissi, L.B., Ahl Laamara, R., “Half-metallic behavior in zirconium carbide (ZrC) doped with Cr and Mn”, Computational Condensed Matter, 27: e00553, (2021).
  • [19] Zarkevich, N.A., Singh, P., Smirnov, A.V., Johnson, D.D., “Effect of substitutional doping and disorder on the phase stability, magnetism, and half-metallicity of Heusler alloys”, Acta Materialia, 225: 117477, (2022).
  • [20] Xiao, G., Wang, L.L., Rong, Q.Y., Xu, H.Q., Xiao, W.Z., “Half-metallic and magnetic properties of AlN nanosheets doped with nonmagnetic metals: A first-principles study”, Computational Materials Science, 124: 98-105, (2016).
  • [21] Özdemir, E.G., Merdan, Z., “Half-metal calculations of CoZrGe half-Heusler compound by using generalized gradient approximation (GGA) and modified Becke-Johnson (mBJ) methods”, Materials Research Express, 6: 116124, (2019).
  • [22] Sofi, S.A., Gupta, D.C., “Investigation of high pressure and temperature study of thermo-physical properties in semiconducting Fe2ZrSi Heusler”, Physica B, 577: 411792, (2020).
  • [23] Lyange, M.V., Sokolovskiy, V.V., Taskaev, S.V., Karpenkov, D.Y., Bogach, A.V., Zheleznyi, M.V., Shchetinin, I.V., Khovaylo, V.V., Buchelnikov, V.D., “Effect of disorder on magnetic properties and martensitic transformation of Co-doped Ni-Mn-Al Heusler alloy”, Intermetallics, 102: 132-139, (2018).
  • [24] Alrahamneh, M.J., Khalifeh, J.M., Mousa, A.A., “Ab-initio calculations of the structural, mechanical, electronic, magnetic and thermoelectric properties of Zr2RhX (X= Ga, In) Heusler alloys”, Physica B, 581: 411941, (2020).
  • [25] Özdemir, E.G., Merdan, Z., “First-principles calculations to investigate half-metallic band gap and elastic stability of Co(Mo,Tc)MnSb compounds”, Physica E, 133: 114790, (2021).
  • [26] Hoat, D.M., Hoang, D.Q., Binh, N.T.T., Naseri, M., Rivas-Silva, J.F., Kartamyshev, A.I., Cocoletzi, G.H., “First principles analysis of the half-metallic ferromagnetism, elastic and thermodynamic properties of equiatomic quaternary Heusler compound CoCrRhSi”, Materials Chemistry and Physics, 257: 123695, (2021).
  • [27] Fu, J., Song, T., Liang, X., Zhao, G., Liu, Z., “Room temperature ferromagnetic half metal in Mn doped cluster-assembled sodalite phase of III-N compounds”, Journal of Magnetism and Magnetic Materials, 499: 166295, (2020).
  • [28] Özdemir, E.G., Merdan, Z., “First-principles calculations on half-metal ferromagnetic results of VZrAs and VZrSb half-Heusler compounds and Al1-xMxAs (M= Co, Fe and x = 0.0625, 0.125, 0.25) diluted magnetic semiconductors”, Journal of Alloys and Compounds, 807: 151656, (2019).
  • [29] De Paiva, R., Alves, J.L.A., Nogueira, R.A., Leite, J.R., Scolfaro, L.M.R., “Cubic binary compounds MnN and MnAs and diluted magnetic Ga1-xMnxN semiconductor alloys: a first-principle study”, Journal of Magnetism and Magnetic Materials, 288: 384-396, (2005).
  • [30] Sheeba, R.A.J.R., Saravan, R., Berchmans, L.J., “Magnetism in melt grown dilute magnetic semiconductor Ge1-xMnx from electron density”, Materials Science in Semiconductor Processing, 15: 731-739, (2012).
  • [31] Oudrane, D., Bourachid, I., Bouafia, H., Sahli, B., Abidri, B., Rached, D., “Computational insights in predicting structural, mechanical, electronic, magnetic and optical properties of EuAlO3 cubic-perovskite using FP-LAPW method”, Computational Condensed Matter, 26: e00537, (2021).
  • [32] Tian, Y., Ge, Z., Sun, A., Zhu, Z., Zhang, Q., Lv, S., Li, H., “The impact of crystal structures on the magnetic and electronic properties in double perovskite Sr2NiTeO6”, Chemical Physics Letters, 754: 137776, (2020).
  • [33] Kostikova, G.P., Kostikov, Yu P., Troyanov, S.I., Korolkov, D.V., “Chemical shifts of the Lα1,2 lines of niobium and zirconium in the x-ray spectra of niobium and zirconium chlorides”, Inorganic Chemistry, 17: 2279, (1978).
  • [34] Henke, H., “The significance of the Jahn-Teller effect for the phase transition of K2NbCl6 and Rb2NbCl6”, Zeitschrift für Kristallographie, 222: 477-486, (2007).
  • [35] Brik, M.G., Kityk, I.V., “Modeling of lattice constant and their relations with ionic radii and electronegativity of constituting ions of A2XY6 cubic crystals (A= K, Cs, Rb, Tl; X= tetravalent cation, Y= F, Cl, Br, I)”, Journal of Physic and Chemistry of Solids, 72: 1256-1260, (2011).
  • [36] Faizan, M., Khan, S.H., Laref, A., Murtaza, G., “Ab-initio prediction of structural, electronic and magnetic properties of Hexafluoromanganete(IV) complexes”, International Journal of Modern Physics B, 32: 1850270, (2018).
  • [37] Ali, M.A., Murtaza, G., Laref, A., “Exploring ferromagnetic half-metallic nature of Cs2NpBr6 via spin polarized density functional theory”, Chinese Physics B, 29: 066102, (2020).
  • [38] Ali, M.A., Ullah, R., Al-Muhimeed, T.I., AlObaid, A.A., Bibi, S., Kattan, N.A., Rashid, N., Murtaza, G., “Spin-based transport properties of Cs2WX6 (X = Cl, Br) ferromagnets for spin-injected thermoelectric current”, The European Physical Journal Plus, 136: 568, (2021).
  • [39] Ali, M.A., Ullah, R., Abdullah, S., Khan, M.A., Murtaza, G., Laref, A., Kattan, N.A., “An investigation of half-metallic variant perovskites A2NbCl6 (A= K, Rb) for spintronic based applications”, Journal of Solid State Chemistry, 293: 121823, (2021).
  • [40] Ali, M.A., Murtaza, G., Khan, A., Algrafy, E., Mahmood, A., Ramay, S.M., “Magnetoelectronic properties of ferromagnetic compounds Rb2TaZ6 (Z = Cl, Br) for possible spintronic applications”, International Journal of Quantum Chemistry, 120: e26357, (2020).
  • [41] Ullah, R., Ali, M.A., Murtaza, G., Mahmood, A., Ramay, S.M., “The significance of anti-fluorite Cs2NbI6 via its structural, electronic, magnetic, optical and thermoelectric properties”, International Journal of Energy Research, 44: 10179-10191, (2020).
  • [42] Ullah, R., Ali, M.A., Murtaza, G., Khan, A., Mahmood, A., “Ab initio study for the structural, electronic, magnetic, optical, and thermoelectric properties of K2OsX6 (X = Cl, Br) compounds”, International Journal of Energy Research, 44: 9035–9049, (2020).
  • [43] Ullah, R., Ali, M.A., Katubi, K.M., Alsaiari, N.S., Abualnaja, K.M., Verma, A.S., Murtaza, G., “Modeling of bulk modulus of A2BX6 (A= K, Cs, Rb, Tl, NH4; B= tetravalent cation; X= F, Cl, Br, I) using semi-empirical model”, Inorganic Chemistry Communications, 139: 109315, (2022).
  • [44] Blaha, P., Schwarz, K., G. Madsen, G.K.H., Kvasnicka, D., Luitz, J., Laskowsk, R., Tran, F., Marks, L., “WIEN2k: An Augmented Plane Wave Local Orbitals Program for Calculating Crystal Properties”, Technische Universitat Wien, Austria, ISBN 3-9501031-1-2, (2001).
  • [45] Tran, F., Blaha, P., “Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential”, Physical Review Letters, 102: 226401, (2009).
  • [46] Blaha, P., Schwarz, K., Tran, F., Laskowski, R., Madsen, G.K.H., Marks, L.D., “WIEN2k: An APW+lo program for calculating the properties of solids”, The Journal of Chemical Physics, 152: 074101, (2020).
  • [47] Singh, D., Planes Waves, “Pseudo-Potentials and the LAPW Method”, Kluwer Academic Publishers, Boston, Dortrecht, London, (1994).
  • [48] Perdew, J.P., Burke, K., Wang, Y., “Generalized gradient approximation for the exchange-correlation hole of a many-electron system”, Physical Review B, 54: 16533-16539, (1996).
  • [49] Perdew, J.P., Burke, S., Ernzerhof, M., “Generalized gradient approximation made simple”, Physical Review Letters, 77: 3865-3868, (1996).
  • [50] Murnaghan, F.D., “The Compressibility of Media under Extreme Pressures”, Proceedings of the National Academy of Sciences, United States of America, (1944).
Year 2023, , 909 - 918, 01.06.2023
https://doi.org/10.35378/gujs.1073140

Abstract

References

  • [1] Misra, P.K., “Chapter 11 – Spintronics”, Physics of Condensed Matter, 339-368, (2012).
  • [2] Hirohata, A., Yamada, K., Nakatani, Y., Prejbeanu, I.L., Dieny, B., Pirro, P., Hillebrands, B., “Review on spintronics: Principles and device applications”, Journal of Magnetism and Magnetic Materials, 509: 166711, (2020).
  • [3] El-Ghazaly, A., Gorchon, J., Wilson, R.B., Pattabi, A., Bokor, J., “Progress towards ultrafast spintronics applications”, Journal of Magnetism and Magnetic Materials, 502: 166478, (2020).
  • [4] Jullière, M., “Tunneling between ferromagnetic films”, Physics Letters A, 54: 225, (1975).
  • [5] Baibich, M.N., Broto, J.M., Fert, A., Nguyen Van Dau, F., Petroff, F., Etienne, P., Creuzet, G., Friederich, A., Chazelas, J., “Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices”, Physical Review Letters, 61: 2472, (1988).
  • [6] Binasch, G., Grünberg, P., Saurenbach, F., Zinn, W., “Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange”, Physical Review B, 39: 4828(R), (1989).
  • [7] Johnson, M., “Spin accumulation in gold films”, Physical Review Letters, 70: 2142, (1993).
  • [8] Liu, C., Shen, T., Wu, H.B., Feng, Y., Chen, J.J., “Applications of magneto-strictive, magneto-optical, magnetic fluid materials in optical fiber current sensors and optical fiber magnetic field sensors: A review”, Optical Fiber Technology, 65: 102634, (2021).
  • [9] Zhang, Y., Zhang, W., Ning, M., Chen, L., Li, H., “Tuning the magnetism of L10-MnGa films by Pt doping”, Applied Surface Science, 542: 148585, (2021).
  • [10] Quiroz, H.P., Calderon, J.A., Dussan, A., “Magnetic switching control in Co/TiO2 bilayer and TiO2:Co thin films for Magnetic-Resistive Random Access Memories (M-RRAM)”, Journal of Alloys and Compounds, 840: 155674, (2020).
  • [11] Nguyen, T.D., Ehrenfreund, E., Vardeny, Z.V., “The spin-polarized organic light emitting diode”, Synthetic Metals, 173: 16-21, (2013).
  • [12] Mondal, R.K., Adhikari, S., Chatterjee, V., Pal, S., “Recent advances and challenges in AlGaN-based ultra-violet light emitting diode technologies”, Materials Research Bulletin, 140: 111258, (2021).
  • [13] Matsushita, M.M., Kawakami, H., Okabe, E., Kouka, H., Kawada, Y., Sugawara, T., “A field-effect transistor consists of spin-polarized TTF-based donor”, Polyhedron, 24: 2870-2875, (2005).
  • [14] De Groot, R.A., Mueller, F.M., van Engen, P.G., Buschow, K.H.J., “New class of materials: half-metallic ferromagnets”, Physical Review Letters, 50: 2024-2027, (1983).
  • [15] Özdemir, E.G., Doğruer, S., “The electronic, half-metallic, elastic, and magnetic properties of new PtWZ (Z = In, Tl, Sn, and Pb) half-Heusler alloys via GGA and GGA+mBJ methods”, Physica Scripta, 96: 125869, (2021).
  • [16] Özdemir, E.G., Doğruer, S., Özcan, A., Merdan, Z., “The effect of structural changes on half-metallic, elastic and magnetic properties of the FeWGa half-Heusler compound via first-principles studies”, Journal of Magnetism and Magnetic Materials, 546: 168872, (2022).
  • [17] Chavan, K.T., Chandra, S., Kshirsagar, A., “Half-metallicity in smallest cage-like cluster of CdTe with doping of transition metal atoms”, Materials Today Communications, 30: 103104, (2022).
  • [18] Bounouala, Z., Goumrhar, F., Drissi, L.B., Ahl Laamara, R., “Half-metallic behavior in zirconium carbide (ZrC) doped with Cr and Mn”, Computational Condensed Matter, 27: e00553, (2021).
  • [19] Zarkevich, N.A., Singh, P., Smirnov, A.V., Johnson, D.D., “Effect of substitutional doping and disorder on the phase stability, magnetism, and half-metallicity of Heusler alloys”, Acta Materialia, 225: 117477, (2022).
  • [20] Xiao, G., Wang, L.L., Rong, Q.Y., Xu, H.Q., Xiao, W.Z., “Half-metallic and magnetic properties of AlN nanosheets doped with nonmagnetic metals: A first-principles study”, Computational Materials Science, 124: 98-105, (2016).
  • [21] Özdemir, E.G., Merdan, Z., “Half-metal calculations of CoZrGe half-Heusler compound by using generalized gradient approximation (GGA) and modified Becke-Johnson (mBJ) methods”, Materials Research Express, 6: 116124, (2019).
  • [22] Sofi, S.A., Gupta, D.C., “Investigation of high pressure and temperature study of thermo-physical properties in semiconducting Fe2ZrSi Heusler”, Physica B, 577: 411792, (2020).
  • [23] Lyange, M.V., Sokolovskiy, V.V., Taskaev, S.V., Karpenkov, D.Y., Bogach, A.V., Zheleznyi, M.V., Shchetinin, I.V., Khovaylo, V.V., Buchelnikov, V.D., “Effect of disorder on magnetic properties and martensitic transformation of Co-doped Ni-Mn-Al Heusler alloy”, Intermetallics, 102: 132-139, (2018).
  • [24] Alrahamneh, M.J., Khalifeh, J.M., Mousa, A.A., “Ab-initio calculations of the structural, mechanical, electronic, magnetic and thermoelectric properties of Zr2RhX (X= Ga, In) Heusler alloys”, Physica B, 581: 411941, (2020).
  • [25] Özdemir, E.G., Merdan, Z., “First-principles calculations to investigate half-metallic band gap and elastic stability of Co(Mo,Tc)MnSb compounds”, Physica E, 133: 114790, (2021).
  • [26] Hoat, D.M., Hoang, D.Q., Binh, N.T.T., Naseri, M., Rivas-Silva, J.F., Kartamyshev, A.I., Cocoletzi, G.H., “First principles analysis of the half-metallic ferromagnetism, elastic and thermodynamic properties of equiatomic quaternary Heusler compound CoCrRhSi”, Materials Chemistry and Physics, 257: 123695, (2021).
  • [27] Fu, J., Song, T., Liang, X., Zhao, G., Liu, Z., “Room temperature ferromagnetic half metal in Mn doped cluster-assembled sodalite phase of III-N compounds”, Journal of Magnetism and Magnetic Materials, 499: 166295, (2020).
  • [28] Özdemir, E.G., Merdan, Z., “First-principles calculations on half-metal ferromagnetic results of VZrAs and VZrSb half-Heusler compounds and Al1-xMxAs (M= Co, Fe and x = 0.0625, 0.125, 0.25) diluted magnetic semiconductors”, Journal of Alloys and Compounds, 807: 151656, (2019).
  • [29] De Paiva, R., Alves, J.L.A., Nogueira, R.A., Leite, J.R., Scolfaro, L.M.R., “Cubic binary compounds MnN and MnAs and diluted magnetic Ga1-xMnxN semiconductor alloys: a first-principle study”, Journal of Magnetism and Magnetic Materials, 288: 384-396, (2005).
  • [30] Sheeba, R.A.J.R., Saravan, R., Berchmans, L.J., “Magnetism in melt grown dilute magnetic semiconductor Ge1-xMnx from electron density”, Materials Science in Semiconductor Processing, 15: 731-739, (2012).
  • [31] Oudrane, D., Bourachid, I., Bouafia, H., Sahli, B., Abidri, B., Rached, D., “Computational insights in predicting structural, mechanical, electronic, magnetic and optical properties of EuAlO3 cubic-perovskite using FP-LAPW method”, Computational Condensed Matter, 26: e00537, (2021).
  • [32] Tian, Y., Ge, Z., Sun, A., Zhu, Z., Zhang, Q., Lv, S., Li, H., “The impact of crystal structures on the magnetic and electronic properties in double perovskite Sr2NiTeO6”, Chemical Physics Letters, 754: 137776, (2020).
  • [33] Kostikova, G.P., Kostikov, Yu P., Troyanov, S.I., Korolkov, D.V., “Chemical shifts of the Lα1,2 lines of niobium and zirconium in the x-ray spectra of niobium and zirconium chlorides”, Inorganic Chemistry, 17: 2279, (1978).
  • [34] Henke, H., “The significance of the Jahn-Teller effect for the phase transition of K2NbCl6 and Rb2NbCl6”, Zeitschrift für Kristallographie, 222: 477-486, (2007).
  • [35] Brik, M.G., Kityk, I.V., “Modeling of lattice constant and their relations with ionic radii and electronegativity of constituting ions of A2XY6 cubic crystals (A= K, Cs, Rb, Tl; X= tetravalent cation, Y= F, Cl, Br, I)”, Journal of Physic and Chemistry of Solids, 72: 1256-1260, (2011).
  • [36] Faizan, M., Khan, S.H., Laref, A., Murtaza, G., “Ab-initio prediction of structural, electronic and magnetic properties of Hexafluoromanganete(IV) complexes”, International Journal of Modern Physics B, 32: 1850270, (2018).
  • [37] Ali, M.A., Murtaza, G., Laref, A., “Exploring ferromagnetic half-metallic nature of Cs2NpBr6 via spin polarized density functional theory”, Chinese Physics B, 29: 066102, (2020).
  • [38] Ali, M.A., Ullah, R., Al-Muhimeed, T.I., AlObaid, A.A., Bibi, S., Kattan, N.A., Rashid, N., Murtaza, G., “Spin-based transport properties of Cs2WX6 (X = Cl, Br) ferromagnets for spin-injected thermoelectric current”, The European Physical Journal Plus, 136: 568, (2021).
  • [39] Ali, M.A., Ullah, R., Abdullah, S., Khan, M.A., Murtaza, G., Laref, A., Kattan, N.A., “An investigation of half-metallic variant perovskites A2NbCl6 (A= K, Rb) for spintronic based applications”, Journal of Solid State Chemistry, 293: 121823, (2021).
  • [40] Ali, M.A., Murtaza, G., Khan, A., Algrafy, E., Mahmood, A., Ramay, S.M., “Magnetoelectronic properties of ferromagnetic compounds Rb2TaZ6 (Z = Cl, Br) for possible spintronic applications”, International Journal of Quantum Chemistry, 120: e26357, (2020).
  • [41] Ullah, R., Ali, M.A., Murtaza, G., Mahmood, A., Ramay, S.M., “The significance of anti-fluorite Cs2NbI6 via its structural, electronic, magnetic, optical and thermoelectric properties”, International Journal of Energy Research, 44: 10179-10191, (2020).
  • [42] Ullah, R., Ali, M.A., Murtaza, G., Khan, A., Mahmood, A., “Ab initio study for the structural, electronic, magnetic, optical, and thermoelectric properties of K2OsX6 (X = Cl, Br) compounds”, International Journal of Energy Research, 44: 9035–9049, (2020).
  • [43] Ullah, R., Ali, M.A., Katubi, K.M., Alsaiari, N.S., Abualnaja, K.M., Verma, A.S., Murtaza, G., “Modeling of bulk modulus of A2BX6 (A= K, Cs, Rb, Tl, NH4; B= tetravalent cation; X= F, Cl, Br, I) using semi-empirical model”, Inorganic Chemistry Communications, 139: 109315, (2022).
  • [44] Blaha, P., Schwarz, K., G. Madsen, G.K.H., Kvasnicka, D., Luitz, J., Laskowsk, R., Tran, F., Marks, L., “WIEN2k: An Augmented Plane Wave Local Orbitals Program for Calculating Crystal Properties”, Technische Universitat Wien, Austria, ISBN 3-9501031-1-2, (2001).
  • [45] Tran, F., Blaha, P., “Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential”, Physical Review Letters, 102: 226401, (2009).
  • [46] Blaha, P., Schwarz, K., Tran, F., Laskowski, R., Madsen, G.K.H., Marks, L.D., “WIEN2k: An APW+lo program for calculating the properties of solids”, The Journal of Chemical Physics, 152: 074101, (2020).
  • [47] Singh, D., Planes Waves, “Pseudo-Potentials and the LAPW Method”, Kluwer Academic Publishers, Boston, Dortrecht, London, (1994).
  • [48] Perdew, J.P., Burke, K., Wang, Y., “Generalized gradient approximation for the exchange-correlation hole of a many-electron system”, Physical Review B, 54: 16533-16539, (1996).
  • [49] Perdew, J.P., Burke, S., Ernzerhof, M., “Generalized gradient approximation made simple”, Physical Review Letters, 77: 3865-3868, (1996).
  • [50] Murnaghan, F.D., “The Compressibility of Media under Extreme Pressures”, Proceedings of the National Academy of Sciences, United States of America, (1944).
There are 50 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Physics
Authors

Evren Görkem Özdemir 0000-0001-9794-1381

Publication Date June 1, 2023
Published in Issue Year 2023

Cite

APA Özdemir, E. G. (2023). Ab-initio Calculations of the Half-metallic Ferromagnetic New Variant Perovskites Li2CrO6 and Li2CuO6. Gazi University Journal of Science, 36(2), 909-918. https://doi.org/10.35378/gujs.1073140
AMA Özdemir EG. Ab-initio Calculations of the Half-metallic Ferromagnetic New Variant Perovskites Li2CrO6 and Li2CuO6. Gazi University Journal of Science. June 2023;36(2):909-918. doi:10.35378/gujs.1073140
Chicago Özdemir, Evren Görkem. “Ab-Initio Calculations of the Half-Metallic Ferromagnetic New Variant Perovskites Li2CrO6 and Li2CuO6”. Gazi University Journal of Science 36, no. 2 (June 2023): 909-18. https://doi.org/10.35378/gujs.1073140.
EndNote Özdemir EG (June 1, 2023) Ab-initio Calculations of the Half-metallic Ferromagnetic New Variant Perovskites Li2CrO6 and Li2CuO6. Gazi University Journal of Science 36 2 909–918.
IEEE E. G. Özdemir, “Ab-initio Calculations of the Half-metallic Ferromagnetic New Variant Perovskites Li2CrO6 and Li2CuO6”, Gazi University Journal of Science, vol. 36, no. 2, pp. 909–918, 2023, doi: 10.35378/gujs.1073140.
ISNAD Özdemir, Evren Görkem. “Ab-Initio Calculations of the Half-Metallic Ferromagnetic New Variant Perovskites Li2CrO6 and Li2CuO6”. Gazi University Journal of Science 36/2 (June 2023), 909-918. https://doi.org/10.35378/gujs.1073140.
JAMA Özdemir EG. Ab-initio Calculations of the Half-metallic Ferromagnetic New Variant Perovskites Li2CrO6 and Li2CuO6. Gazi University Journal of Science. 2023;36:909–918.
MLA Özdemir, Evren Görkem. “Ab-Initio Calculations of the Half-Metallic Ferromagnetic New Variant Perovskites Li2CrO6 and Li2CuO6”. Gazi University Journal of Science, vol. 36, no. 2, 2023, pp. 909-18, doi:10.35378/gujs.1073140.
Vancouver Özdemir EG. Ab-initio Calculations of the Half-metallic Ferromagnetic New Variant Perovskites Li2CrO6 and Li2CuO6. Gazi University Journal of Science. 2023;36(2):909-18.