Research Article
BibTex RIS Cite
Year 2023, , 1022 - 1032, 01.09.2023
https://doi.org/10.35378/gujs.1089316

Abstract

Supporting Institution

Karabük Üniversitesi

Project Number

KBÜBAP-18-DS-046

References

  • [1] Yılmaz, F., Ozer, M., Kani, I., Bekaroglu, O., “Catalytic activity of a thermoregulated, phase-separable Pd(II)-perfluoroalkyl phthalocyanine complex in an organic/fluorous biphasic system: hydrogenation of olefins”, Catalysis Letters, 130: 642-647, (2009).
  • [2] Leznoff, C.C., Lever, A.B.P., “Phthalocyanines properties and applications”, VCH Publisher, New York, Vol. 2, (1993).
  • [3] Leznoff, C.C., Lever, A.B.P., “Phthalocyanines Properties and Applications”, VCH Publisher, New York, Vol. 1, (1989).
  • [4] Parra, V., Bouvet, M., Brunet, J., Rodríguez-Mendez, M.L., Saja, J.A., “On the effect of ammonia and wet atmospheres on the conducting properties of different lutetium bis-phthalocyanine thin films”, Thin Solid Films, 516: 9012-9019, (2008).
  • [5] Al-Raqa, S.Y., Khezami, K., Kaya, E.N., Durmus, M., “A novel water soluble axially substituted silicon(IV) phthalocyanine bearing quaternized 4-(4-pyridinyl)phenol groups: Synthesis, characterization, photophysicochemical properties and BSA/DNA binding behavior”, Polyhedron, 194: 114937, (2021).
  • [6] Rosenthal, I., “Phthalocyanines as photodynamic sensitizer”, Photochemistry and Photobiology, 53: 859-870, (1991).
  • [7] Leznoff, C.C., Lever A.B.P., “Phthalocyanines, properties and applications”, VCH Publisher, New York, (1996).
  • [8] Hadjiliadis, N.D., Sletten, E., “Metal complex–DNA interactions”, Wiley-Blackwell, New York, (2009).
  • [9] Van Holst, M., Grant, M.P., Aldrich-Wright, J., “Metallointercalators-synthesis and techniques to probe their interactions with biomolecules”, Springer, Wien, New York, (2011).
  • [10] Lukyanets, E.A., “Phthalocyanines as photosensitizers in the photodynamic therapy of cancer”, Journal of Porphyrins and Phthalocyanines, 3: 424–432, (1999).
  • [11] Vummidi, B.R., Noreen. F., Alzeer J., Moelling, K., Luedtke, N.W., “Photodynamic agents with anti-metastatic activities”, ACS Chemical Biology, 8: 1737–1746, (2013).
  • [12] Yildiz, B.T., Sezgin, T., Cakar, Z.P., Uslan, C., Sesalan, B.S., “The use of novel photo bleachable phthalocyanines to image DNA”, Synthetic Metals, 161: 1720–1724, (2011).
  • [13] Amitha, G.S., Vasudevan, S., “DNA/BSA binding studies of peripherally tetra substituted neutral azophenoxy zinc phthalocyanine”, Polyhedron, 175: 114208, (2020).
  • [14] Ali, A., Bhattacharya, S., “DNA binders in clinical trials and chemotherapy”, Bioorganic Medicinal Chemistry, 22: 4506–4521, (2014).
  • [15] Alam, M.D.F., Varshney, S., Khan, M.A., Laskar, A.A., Younus, H., “In vitro DNA binding studies of therapeutic and prophylactic drug citral”, International Journal of Biological Macromolecules, 113: 300–308, (2018).
  • [16] Palchaudhuri, R., Hergenrother, P.J., “DNA as a target for anticancer compounds: methods to determine the mode of binding and the mechanism of action”, Current Opinion in biotechnology, 18: 497–503, (2007).
  • [17] Bağda, E., Yabaş, E., Bağda, E., “Analytical approaches for clarification of DNA-double decker phthalocyanine binding mechanism: As an alternative anticancer chemotherapeutic”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 172: 199–204, (2017).
  • [18] Rescifina, A., Zagni, C., Varrica, M.G., Pistarà, V., Corsaro, A., “Recent advances in small organic molecules as DNA intercalating agents: synthesis, activity, and modeling”, European Journal of Medicinal Chemistry, 74: 95–115, (2014).
  • [19] Ozluer, C., Satana Kara, H.E., “In vitro DNA binding studies of anticancer drug idarubicin using spectroscopic techniques”, Journal of photochemistry and photobiology B Biology, 138: 36–42, (2014).
  • [20] Williams, A.K., Dasilva, S.C., Bhatta, A., Rawal, B., Liu, M., Korobkova, E.A., “Determination of the drug-DNA binding modes using fluorescence-based assays”, Analytical Biochemistry, 411: 66–73, (2012).
  • [21] Özkay, Y., Işıkdağ, İ., İncesu, Z., Akalın, G., “Synthesis of 2-substituted-N-[4-(1-methyl-4,5-diphenyl-1H-imidazole-2-yl)phenyl]acetamide derivatives and evaluation of their anticancer activity”, European Journal of Medicinal Chemistry, 45: 3320–3328, (2010).
  • [22] Uslan, C., Sesalan, B.Ş., “The synthesis, photochemical and biological properties of new silicon phthalocyanines”, Inorganica Chimica Acta, 394: 353–362, (2013).
  • [23] Ballı, Z., Arslantaş, A., Solğun Güngördü, D., Ağırtaş, M.S., “DNA binding studies of the 2,10,16,24–tetrakis (phenoxy-3-methoxybenzoic acid) phthalocyaninato) Co(II) and Cu(II) compounds”, Springer Nature Applied Sciences, 2: 844-853, (2020).
  • [24] Barone, G., Terenzi, A., Lauria, A., Almerico, A.M., Leal, J.M., Busto, N., García, B., “DNA-binding of nickel(II), copper(II) and zinc(II) complexes: Structure–affinity relationships”, Coordination Chemistry Reviews, 257 (19–20): 2848-2862, (2013).
  • [25] Wolfe, A., Shimer, G.H., Meehan, T., “Polycyclic aromatic hydrocarbons physically intercalate into regions of denatured DNA”, Biochemistry, 26: 6392–6396, (1987).
  • [26] Liu, X.W., Shen Y.M., Li, Z.X., Zhong, X., Chen, Y.D., Zhang, S.B., “Study on DNA binding behavior and light switch effect of new coumarin-derived Ru (II) complexes”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 149: 150–156, (2015).
  • [27] Barton, J.K., Goldberg, J.M., Kumar, C.V., Turro, N.J., “Binding modes and base specificity of tris(phenanthroline)ruthenium (II) enantiomers with nucleic acids: tuning the stereoselectivity”, Journal of American Chemical Society, 108: 2081–2088, (1986).
  • [28] Amitha, G.S., Vasudevan, S., “DNA binding and cleavage studies of novel Betti base substituted quaternary Cu (II) and Zn (II) phthalocyanines”, Polyhedron, 190: 114773, (2020).
  • [29] López Zeballos, N.C., Gauna, G.A., García Vior, M.C., Awruch, J., Dicelio, L.E., “Interaction of cationic phthalocyanines with DNA. Importance of the structure of the substituents”, Journal of Photochemistry and Photobiology B: Biology, 136: 29-33, (2014).
  • [30] Barut, B., Yalçın, C.Ö., Sari, S., Çoban, Ö., Keleş¸ T., Biyiklioglu, Z., Abudayyak, M., Demirbaş, Ü., Özel, A., “Novel water soluble BODIPY compounds: Synthesis, photochemical, DNA interaction, topoisomerases inhibition and photodynamic activity properties”, European Journal of Medicinal Chemistry, 183: 111685, (2019).
  • [31] Çoban, Ö., Barut, B., Yalçın, C.Ö., Özel, A., Biyiklioglu, Z., “Development and in vitro evaluation of BSA-coated liposomes containing Zn (II) phthalocyanine-containing ferrocene groups for photodynamic therapy of lung cancer”, Journal of Organometallic Chemistry, 925: 121469, (2020).
  • [32] Satyanarayana, S., Dabrowiak, J.C., Chaires, J.B., “Neither.DELTA.- nor.LAMBDA.-tris(phenanthroline)ruthenium(II) binds to DNA by classical intercalation”, Biochemistry, 31: 9319–9324, (1992).
  • [33] Ji, L.N., Zou, X.H., Liu, J.G., “Shape- and enantioselective interaction of Ru (II)/Co (III) polypyridyl complexes with DNA”, Coordination Chemistry Reviews, 216–217: 513– 536, (2001).

The Study of Interaction Activity of Nickel (ll) Phthalocyanine Complex Bearing Tetra Substituted Phenoxy-3-Methoxybenzoic Acid Groups with DNA

Year 2023, , 1022 - 1032, 01.09.2023
https://doi.org/10.35378/gujs.1089316

Abstract

Nickel phthalocyanine complex containing 3-methoxybenzoic acid groups was acquired and specified by way of Fourier Transform Infrared, NMR and UV-Visble spectroscopy procedures. Interaction of PcNi with the DNA molecule was examined via electronic absorption spectra, fluorescence spectra, melting point, viscosity, and the electrophoresis technics, respectively. The interaction activity of PcNi against the DNA was examined by way of absorption spectra titrations and the fluorescence spectra, farther by conducting melting point, viscosity procedures in the buffer of a pH 7.02. The obtained outcomes from these methods demonstrated that PcNi indicated substantial binding affinity to the DNA via intercalating by Kb of 1.31 x 106 m-1. Further, the interacting activity of PcNi on the DNA was analyzed by which electrophoresis technique and this procedure indicated that PcNi complex exhibits strong binding affinity on the DNA.

Project Number

KBÜBAP-18-DS-046

References

  • [1] Yılmaz, F., Ozer, M., Kani, I., Bekaroglu, O., “Catalytic activity of a thermoregulated, phase-separable Pd(II)-perfluoroalkyl phthalocyanine complex in an organic/fluorous biphasic system: hydrogenation of olefins”, Catalysis Letters, 130: 642-647, (2009).
  • [2] Leznoff, C.C., Lever, A.B.P., “Phthalocyanines properties and applications”, VCH Publisher, New York, Vol. 2, (1993).
  • [3] Leznoff, C.C., Lever, A.B.P., “Phthalocyanines Properties and Applications”, VCH Publisher, New York, Vol. 1, (1989).
  • [4] Parra, V., Bouvet, M., Brunet, J., Rodríguez-Mendez, M.L., Saja, J.A., “On the effect of ammonia and wet atmospheres on the conducting properties of different lutetium bis-phthalocyanine thin films”, Thin Solid Films, 516: 9012-9019, (2008).
  • [5] Al-Raqa, S.Y., Khezami, K., Kaya, E.N., Durmus, M., “A novel water soluble axially substituted silicon(IV) phthalocyanine bearing quaternized 4-(4-pyridinyl)phenol groups: Synthesis, characterization, photophysicochemical properties and BSA/DNA binding behavior”, Polyhedron, 194: 114937, (2021).
  • [6] Rosenthal, I., “Phthalocyanines as photodynamic sensitizer”, Photochemistry and Photobiology, 53: 859-870, (1991).
  • [7] Leznoff, C.C., Lever A.B.P., “Phthalocyanines, properties and applications”, VCH Publisher, New York, (1996).
  • [8] Hadjiliadis, N.D., Sletten, E., “Metal complex–DNA interactions”, Wiley-Blackwell, New York, (2009).
  • [9] Van Holst, M., Grant, M.P., Aldrich-Wright, J., “Metallointercalators-synthesis and techniques to probe their interactions with biomolecules”, Springer, Wien, New York, (2011).
  • [10] Lukyanets, E.A., “Phthalocyanines as photosensitizers in the photodynamic therapy of cancer”, Journal of Porphyrins and Phthalocyanines, 3: 424–432, (1999).
  • [11] Vummidi, B.R., Noreen. F., Alzeer J., Moelling, K., Luedtke, N.W., “Photodynamic agents with anti-metastatic activities”, ACS Chemical Biology, 8: 1737–1746, (2013).
  • [12] Yildiz, B.T., Sezgin, T., Cakar, Z.P., Uslan, C., Sesalan, B.S., “The use of novel photo bleachable phthalocyanines to image DNA”, Synthetic Metals, 161: 1720–1724, (2011).
  • [13] Amitha, G.S., Vasudevan, S., “DNA/BSA binding studies of peripherally tetra substituted neutral azophenoxy zinc phthalocyanine”, Polyhedron, 175: 114208, (2020).
  • [14] Ali, A., Bhattacharya, S., “DNA binders in clinical trials and chemotherapy”, Bioorganic Medicinal Chemistry, 22: 4506–4521, (2014).
  • [15] Alam, M.D.F., Varshney, S., Khan, M.A., Laskar, A.A., Younus, H., “In vitro DNA binding studies of therapeutic and prophylactic drug citral”, International Journal of Biological Macromolecules, 113: 300–308, (2018).
  • [16] Palchaudhuri, R., Hergenrother, P.J., “DNA as a target for anticancer compounds: methods to determine the mode of binding and the mechanism of action”, Current Opinion in biotechnology, 18: 497–503, (2007).
  • [17] Bağda, E., Yabaş, E., Bağda, E., “Analytical approaches for clarification of DNA-double decker phthalocyanine binding mechanism: As an alternative anticancer chemotherapeutic”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 172: 199–204, (2017).
  • [18] Rescifina, A., Zagni, C., Varrica, M.G., Pistarà, V., Corsaro, A., “Recent advances in small organic molecules as DNA intercalating agents: synthesis, activity, and modeling”, European Journal of Medicinal Chemistry, 74: 95–115, (2014).
  • [19] Ozluer, C., Satana Kara, H.E., “In vitro DNA binding studies of anticancer drug idarubicin using spectroscopic techniques”, Journal of photochemistry and photobiology B Biology, 138: 36–42, (2014).
  • [20] Williams, A.K., Dasilva, S.C., Bhatta, A., Rawal, B., Liu, M., Korobkova, E.A., “Determination of the drug-DNA binding modes using fluorescence-based assays”, Analytical Biochemistry, 411: 66–73, (2012).
  • [21] Özkay, Y., Işıkdağ, İ., İncesu, Z., Akalın, G., “Synthesis of 2-substituted-N-[4-(1-methyl-4,5-diphenyl-1H-imidazole-2-yl)phenyl]acetamide derivatives and evaluation of their anticancer activity”, European Journal of Medicinal Chemistry, 45: 3320–3328, (2010).
  • [22] Uslan, C., Sesalan, B.Ş., “The synthesis, photochemical and biological properties of new silicon phthalocyanines”, Inorganica Chimica Acta, 394: 353–362, (2013).
  • [23] Ballı, Z., Arslantaş, A., Solğun Güngördü, D., Ağırtaş, M.S., “DNA binding studies of the 2,10,16,24–tetrakis (phenoxy-3-methoxybenzoic acid) phthalocyaninato) Co(II) and Cu(II) compounds”, Springer Nature Applied Sciences, 2: 844-853, (2020).
  • [24] Barone, G., Terenzi, A., Lauria, A., Almerico, A.M., Leal, J.M., Busto, N., García, B., “DNA-binding of nickel(II), copper(II) and zinc(II) complexes: Structure–affinity relationships”, Coordination Chemistry Reviews, 257 (19–20): 2848-2862, (2013).
  • [25] Wolfe, A., Shimer, G.H., Meehan, T., “Polycyclic aromatic hydrocarbons physically intercalate into regions of denatured DNA”, Biochemistry, 26: 6392–6396, (1987).
  • [26] Liu, X.W., Shen Y.M., Li, Z.X., Zhong, X., Chen, Y.D., Zhang, S.B., “Study on DNA binding behavior and light switch effect of new coumarin-derived Ru (II) complexes”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 149: 150–156, (2015).
  • [27] Barton, J.K., Goldberg, J.M., Kumar, C.V., Turro, N.J., “Binding modes and base specificity of tris(phenanthroline)ruthenium (II) enantiomers with nucleic acids: tuning the stereoselectivity”, Journal of American Chemical Society, 108: 2081–2088, (1986).
  • [28] Amitha, G.S., Vasudevan, S., “DNA binding and cleavage studies of novel Betti base substituted quaternary Cu (II) and Zn (II) phthalocyanines”, Polyhedron, 190: 114773, (2020).
  • [29] López Zeballos, N.C., Gauna, G.A., García Vior, M.C., Awruch, J., Dicelio, L.E., “Interaction of cationic phthalocyanines with DNA. Importance of the structure of the substituents”, Journal of Photochemistry and Photobiology B: Biology, 136: 29-33, (2014).
  • [30] Barut, B., Yalçın, C.Ö., Sari, S., Çoban, Ö., Keleş¸ T., Biyiklioglu, Z., Abudayyak, M., Demirbaş, Ü., Özel, A., “Novel water soluble BODIPY compounds: Synthesis, photochemical, DNA interaction, topoisomerases inhibition and photodynamic activity properties”, European Journal of Medicinal Chemistry, 183: 111685, (2019).
  • [31] Çoban, Ö., Barut, B., Yalçın, C.Ö., Özel, A., Biyiklioglu, Z., “Development and in vitro evaluation of BSA-coated liposomes containing Zn (II) phthalocyanine-containing ferrocene groups for photodynamic therapy of lung cancer”, Journal of Organometallic Chemistry, 925: 121469, (2020).
  • [32] Satyanarayana, S., Dabrowiak, J.C., Chaires, J.B., “Neither.DELTA.- nor.LAMBDA.-tris(phenanthroline)ruthenium(II) binds to DNA by classical intercalation”, Biochemistry, 31: 9319–9324, (1992).
  • [33] Ji, L.N., Zou, X.H., Liu, J.G., “Shape- and enantioselective interaction of Ru (II)/Co (III) polypyridyl complexes with DNA”, Coordination Chemistry Reviews, 216–217: 513– 536, (2001).
There are 33 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Chemistry
Authors

Ali Arslantas 0000-0002-0847-9015

Mehmet Salih Ağırtaş 0000-0003-1296-2066

Project Number KBÜBAP-18-DS-046
Publication Date September 1, 2023
Published in Issue Year 2023

Cite

APA Arslantas, A., & Ağırtaş, M. S. (2023). The Study of Interaction Activity of Nickel (ll) Phthalocyanine Complex Bearing Tetra Substituted Phenoxy-3-Methoxybenzoic Acid Groups with DNA. Gazi University Journal of Science, 36(3), 1022-1032. https://doi.org/10.35378/gujs.1089316
AMA Arslantas A, Ağırtaş MS. The Study of Interaction Activity of Nickel (ll) Phthalocyanine Complex Bearing Tetra Substituted Phenoxy-3-Methoxybenzoic Acid Groups with DNA. Gazi University Journal of Science. September 2023;36(3):1022-1032. doi:10.35378/gujs.1089316
Chicago Arslantas, Ali, and Mehmet Salih Ağırtaş. “The Study of Interaction Activity of Nickel (ll) Phthalocyanine Complex Bearing Tetra Substituted Phenoxy-3-Methoxybenzoic Acid Groups With DNA”. Gazi University Journal of Science 36, no. 3 (September 2023): 1022-32. https://doi.org/10.35378/gujs.1089316.
EndNote Arslantas A, Ağırtaş MS (September 1, 2023) The Study of Interaction Activity of Nickel (ll) Phthalocyanine Complex Bearing Tetra Substituted Phenoxy-3-Methoxybenzoic Acid Groups with DNA. Gazi University Journal of Science 36 3 1022–1032.
IEEE A. Arslantas and M. S. Ağırtaş, “The Study of Interaction Activity of Nickel (ll) Phthalocyanine Complex Bearing Tetra Substituted Phenoxy-3-Methoxybenzoic Acid Groups with DNA”, Gazi University Journal of Science, vol. 36, no. 3, pp. 1022–1032, 2023, doi: 10.35378/gujs.1089316.
ISNAD Arslantas, Ali - Ağırtaş, Mehmet Salih. “The Study of Interaction Activity of Nickel (ll) Phthalocyanine Complex Bearing Tetra Substituted Phenoxy-3-Methoxybenzoic Acid Groups With DNA”. Gazi University Journal of Science 36/3 (September 2023), 1022-1032. https://doi.org/10.35378/gujs.1089316.
JAMA Arslantas A, Ağırtaş MS. The Study of Interaction Activity of Nickel (ll) Phthalocyanine Complex Bearing Tetra Substituted Phenoxy-3-Methoxybenzoic Acid Groups with DNA. Gazi University Journal of Science. 2023;36:1022–1032.
MLA Arslantas, Ali and Mehmet Salih Ağırtaş. “The Study of Interaction Activity of Nickel (ll) Phthalocyanine Complex Bearing Tetra Substituted Phenoxy-3-Methoxybenzoic Acid Groups With DNA”. Gazi University Journal of Science, vol. 36, no. 3, 2023, pp. 1022-3, doi:10.35378/gujs.1089316.
Vancouver Arslantas A, Ağırtaş MS. The Study of Interaction Activity of Nickel (ll) Phthalocyanine Complex Bearing Tetra Substituted Phenoxy-3-Methoxybenzoic Acid Groups with DNA. Gazi University Journal of Science. 2023;36(3):1022-3.