Magnetic Separation of Micro Beads and Cells on a Paper-Based Lateral Flow System
Year 2023,
, 1538 - 1551, 01.12.2023
Muhammad Fuad Farooqi
,
Kutay İçöz
Abstract
Paper based lateral flow systems are widely used biosensor platforms to detect biomolecules in a liquid sample. Proteins, bacteria, oligonucleotides, and nanoparticles were investigated in the literature. In this work we designed a magnetic platform including dual magnets and tested the flow of micron size immunomagnetic particles alone and when loaded with cells on two different types of papers. The prewetting conditions of the paper and the applied external magnetic field are the two dominant factors affecting the particle and cell transport in paper. The images recorded with a cell phone, or with a bright field optical microscope were analyzed to measure the flow of particles and cells. The effect of prewetting conditions and magnetic force were measured, and it was shown that in the worst case, minimum 90% of the introduced cells reached to the edge of the paper. The paper based magnetophoretic lateral flow systems can be used for cell assays.
References
- [1] Dincer, C., Bruch, R., Costa-Rama, E., Fernández-Abedul, M. T., Merkoçi, A., Manz, A., Güder, F, “Disposable Sensors in Diagnostics, Food, and Environmental Monitoring”, Advanced Materials, 31(30): 1806739, (2019).
- [2] Quesada-González, D. and Merkoçi, A., “Nanoparticle-based lateral flow biosensors”, Biosensors and Bioelectronics, 73: 47-63, (2015).
- [3] Zhang, T., Wang, H. B., Zhong, Z. T., Li, C. Q., Chen, W., Liu, B., & Zhao, Y. Di., “A smartphone-based rapid quantitative detection platform for lateral flow strip of human chorionic gonadotropin with optimized image algorithm”, Microchemical Journal, 157: 105038, (2020).
- [4] Rey, E., Jain, A., Abdullah, S., Choudhury, T., and Erickson, D., “Personalized stress monitoring: a smartphone-enabled system for quantification of salivary cortisol”, Personal and Ubiquitous Computing, 22: 867-877, (2018).
- [5] Quesada-González, D. and Merkoçi, A., “Nanoparticle-based lateral flow biosensors”, Biosensors and Bioelectronics, 73: 47-63, (2015).
- [6] Shyu, R. H., Shyu, H. F., Liu, H. W. and Tang, S. S., “Colloidal gold-based immunochromatographic assay for detection of ricin”, Toxicon, 40(3): 255–258, (2002).
- [7] Mazumdar, D., Liu, J., Lu, G., Zhou, J. and Lu, Y., “Easy-to-use dipstick tests for detection of lead in paints using non-cross-linked gold nanoparticle-DNAzyme conjugates”, Chemical Communications, 46(9): 1416–1418, (2010).
- [8] Torabi, S. F. and Lu, Y., “Small-molecule diagnostics based on functional DNA nanotechnology: A dipstick test for mercury”, Faraday Discussions, 149: 125–135, (2011).
- [9] Wang, X., Li, K., Shi, D., Xiong, N., Jin, X., Yi, J. and Bi, D., “Development of an immunochromatographic lateral-flow test strip for rapid detection of sulfonamides in eggs and chicken muscles”, Journal of Agricultural Food Chemistry, 55(6): 2072–2078, (2007).
- [10] Leem, H., Shukla, S., Song, X., Heu, S. and Kim, M., “An Efficient Liposome-Based Immunochromatographic Strip Assay for the Sensitive Detection of SalmonellaTyphimurium in Pure Culture”, Journal of Food Safety, 34(3): 239–248, (2014).
- [11] Zhou, P., Lu, Y., Zhu, J., Hong, J., Li, B., Zhou, J., Montoya, A., “Nanocolloidal gold-based immunoassay for the detection of the N-methylcarbamate pesticide carbofuran”, Journal of Agricultural Food Chemistry, 52(14): 4355–4359, (2004).
- [12] Inoue, K., Ferrante, P., Hirano, Y., Yasukawa, T., Shiku, H. and Matsue, T., “A competitive immunochromatographic assay for testosterone based on electrochemical detection”, Talanta, 73(5): 886–892, (2007).
- [13] Parolo, C., Sena-Torralba, A., Bergua, J. F., Calucho, E., Fuentes-Chust, C., Hu, L., Merkoçi, A., “Tutorial: design and fabrication of nanoparticle-based lateral-flow immunoassays”, Nature Protocols, 15: 3788-3816, (2020).
- [14] Zhang, Y., Bai, J., Wu, H. and Ying, J. Y., “Trapping cells in paper for white blood cell count”, Biosensors and Bioelectronics, 69: 121-127, (2015).
- [15] Wu, W., Yu, L., Fang, Z., Lie, P. and Zeng, L., “A lateral flow biosensor for the detection of human pluripotent stem cells”, Analytical Biochememistry, 436(2): 160-164, (2013).
- [16] Sharma, A., Tok, A. I. Y., Lee, C., Ganapathy, R., Alagappan, P. and Liedberg, B., “Magnetic field assisted preconcentration of biomolecules for lateral flow assaying”, Sensors Actuators, B Chemical, 285: 431-437, (2019).
- [17] İçöz, K., Gerçek, T., Murat, A., Özcan, S. and Ünal, E., “Capturing B type acute lymphoblastic leukemia cells using two types of antibodies”, Biotechnology Progress, 35(1): e2737, (2019).
- [18] İçöz, K. and Mzava, O., “Detection of Proteins Using Nano Magnetic Particle Accumulation-Based Signal Amplification”, Applied Sciences, 6(12): 394, (2016).
- [19] Mzava, O., Tas, Z. and İçöz, K., “Magnetic micro/nanoparticle flocculation-based signal amplification for biosensing”, International Journal of Nanomedicine, 11: 2619–2631, (2016).
- [20] Icoz, K., Iverson, B. D. and Savran, C., “Noise analysis and sensitivity enhancement in immunomagnetic nanomechanical biosensors”, Applied Physics Letters, 93(10): 103902, (2008).
- [21] İçöz, K., Akar, Ü. and Ünal, E., “Microfluidic Chip based direct triple antibody immunoassay for monitoring patient comparative response to leukemia treatment”, Biomedical Microdevices, 22(3): 48, (2020).
- [22] Uslu, F., Icoz, K., Tasdemir, K., Doğan, R. S. and Yilmaz, B., “Image-analysis based readout method for biochip: Automated quantification of immunomagnetic beads, micropads and patient leukemia cell”, Micron, 133: 102863, (2020).
- [23] Hejazian, M., Li, W. and Nguyen, N.-T., “Lab on a chip for continuous-flow magnetic cell separation”, Lab Chip, 15(4): 959–970, (2015).
- [24] Nguyen, N. T., “Micro-magnetofluidics: Interactions between magnetism and fluid flow on the microscale”, Microfluidics and Nanofluidics, 12: 1-6, (2012).
- [25] Ablay, G., Böyük, M. and İçöz, K., “Design, modeling, and control of a horizontal magnetic micromanipulator”, Tranactions of Institute of Measurement and Control, 41(11): 3190-3198, (2019).
- [26] Washburn, E. W., “The dynamics of capillary flow”, Physical Review, 17(3): 273-283, (1921).
- [27] Li, H. “Qualitative Blood Coagulation Test Using Paper-Based Microfluidic Lateral Flow Device”, MSc. Thesis, University of Cincinnati, School of Electrical Engineering and Computing Science, (30-40), 2014.
- [28] Gong, M. M. and Sinton, D., “Turning the Page: Advancing Paper-Based Microfluidics for Broad Diagnostic Application”, Chemical Reviews, 117(12): 8447-8480, (2017).
- [29] Cummins, B. M., Chinthapatla, R., Ligler, F. S. and Walker, G. M., “Time-Dependent Model for Fluid Flow in Porous Materials with Multiple Pore Sizes”, Analytical Chemistry, 89(8): 4377–4381, (2017).
- [30] Walji, N. and MacDonald, B. D., “Influence of Geometry and Surrounding Conditions on Fluid Flow in Paper-Based Devices”, Micromachines, 7(5): 73, (2016).
- [31] Chan, B.D., Mateen, F., Chang, C.L., Icoz, K. and Savran, C. A., “A compact manually actuated micromanipulator”, Journal of Microelectromechanical Systems, 21(1): 7–9, (2012).
- [32] Icoz, K., Soylu, M. C., Canikara, Z. and Unal, E., “Quartz-crystal Microbalance Measurements of CD19 Antibody Immobilization on Gold Surface and Capturing B Lymphoblast Cells: Effect of Surface Functionalization”, Electroanalysis, 30(5): 834–841, (2018).
Year 2023,
, 1538 - 1551, 01.12.2023
Muhammad Fuad Farooqi
,
Kutay İçöz
References
- [1] Dincer, C., Bruch, R., Costa-Rama, E., Fernández-Abedul, M. T., Merkoçi, A., Manz, A., Güder, F, “Disposable Sensors in Diagnostics, Food, and Environmental Monitoring”, Advanced Materials, 31(30): 1806739, (2019).
- [2] Quesada-González, D. and Merkoçi, A., “Nanoparticle-based lateral flow biosensors”, Biosensors and Bioelectronics, 73: 47-63, (2015).
- [3] Zhang, T., Wang, H. B., Zhong, Z. T., Li, C. Q., Chen, W., Liu, B., & Zhao, Y. Di., “A smartphone-based rapid quantitative detection platform for lateral flow strip of human chorionic gonadotropin with optimized image algorithm”, Microchemical Journal, 157: 105038, (2020).
- [4] Rey, E., Jain, A., Abdullah, S., Choudhury, T., and Erickson, D., “Personalized stress monitoring: a smartphone-enabled system for quantification of salivary cortisol”, Personal and Ubiquitous Computing, 22: 867-877, (2018).
- [5] Quesada-González, D. and Merkoçi, A., “Nanoparticle-based lateral flow biosensors”, Biosensors and Bioelectronics, 73: 47-63, (2015).
- [6] Shyu, R. H., Shyu, H. F., Liu, H. W. and Tang, S. S., “Colloidal gold-based immunochromatographic assay for detection of ricin”, Toxicon, 40(3): 255–258, (2002).
- [7] Mazumdar, D., Liu, J., Lu, G., Zhou, J. and Lu, Y., “Easy-to-use dipstick tests for detection of lead in paints using non-cross-linked gold nanoparticle-DNAzyme conjugates”, Chemical Communications, 46(9): 1416–1418, (2010).
- [8] Torabi, S. F. and Lu, Y., “Small-molecule diagnostics based on functional DNA nanotechnology: A dipstick test for mercury”, Faraday Discussions, 149: 125–135, (2011).
- [9] Wang, X., Li, K., Shi, D., Xiong, N., Jin, X., Yi, J. and Bi, D., “Development of an immunochromatographic lateral-flow test strip for rapid detection of sulfonamides in eggs and chicken muscles”, Journal of Agricultural Food Chemistry, 55(6): 2072–2078, (2007).
- [10] Leem, H., Shukla, S., Song, X., Heu, S. and Kim, M., “An Efficient Liposome-Based Immunochromatographic Strip Assay for the Sensitive Detection of SalmonellaTyphimurium in Pure Culture”, Journal of Food Safety, 34(3): 239–248, (2014).
- [11] Zhou, P., Lu, Y., Zhu, J., Hong, J., Li, B., Zhou, J., Montoya, A., “Nanocolloidal gold-based immunoassay for the detection of the N-methylcarbamate pesticide carbofuran”, Journal of Agricultural Food Chemistry, 52(14): 4355–4359, (2004).
- [12] Inoue, K., Ferrante, P., Hirano, Y., Yasukawa, T., Shiku, H. and Matsue, T., “A competitive immunochromatographic assay for testosterone based on electrochemical detection”, Talanta, 73(5): 886–892, (2007).
- [13] Parolo, C., Sena-Torralba, A., Bergua, J. F., Calucho, E., Fuentes-Chust, C., Hu, L., Merkoçi, A., “Tutorial: design and fabrication of nanoparticle-based lateral-flow immunoassays”, Nature Protocols, 15: 3788-3816, (2020).
- [14] Zhang, Y., Bai, J., Wu, H. and Ying, J. Y., “Trapping cells in paper for white blood cell count”, Biosensors and Bioelectronics, 69: 121-127, (2015).
- [15] Wu, W., Yu, L., Fang, Z., Lie, P. and Zeng, L., “A lateral flow biosensor for the detection of human pluripotent stem cells”, Analytical Biochememistry, 436(2): 160-164, (2013).
- [16] Sharma, A., Tok, A. I. Y., Lee, C., Ganapathy, R., Alagappan, P. and Liedberg, B., “Magnetic field assisted preconcentration of biomolecules for lateral flow assaying”, Sensors Actuators, B Chemical, 285: 431-437, (2019).
- [17] İçöz, K., Gerçek, T., Murat, A., Özcan, S. and Ünal, E., “Capturing B type acute lymphoblastic leukemia cells using two types of antibodies”, Biotechnology Progress, 35(1): e2737, (2019).
- [18] İçöz, K. and Mzava, O., “Detection of Proteins Using Nano Magnetic Particle Accumulation-Based Signal Amplification”, Applied Sciences, 6(12): 394, (2016).
- [19] Mzava, O., Tas, Z. and İçöz, K., “Magnetic micro/nanoparticle flocculation-based signal amplification for biosensing”, International Journal of Nanomedicine, 11: 2619–2631, (2016).
- [20] Icoz, K., Iverson, B. D. and Savran, C., “Noise analysis and sensitivity enhancement in immunomagnetic nanomechanical biosensors”, Applied Physics Letters, 93(10): 103902, (2008).
- [21] İçöz, K., Akar, Ü. and Ünal, E., “Microfluidic Chip based direct triple antibody immunoassay for monitoring patient comparative response to leukemia treatment”, Biomedical Microdevices, 22(3): 48, (2020).
- [22] Uslu, F., Icoz, K., Tasdemir, K., Doğan, R. S. and Yilmaz, B., “Image-analysis based readout method for biochip: Automated quantification of immunomagnetic beads, micropads and patient leukemia cell”, Micron, 133: 102863, (2020).
- [23] Hejazian, M., Li, W. and Nguyen, N.-T., “Lab on a chip for continuous-flow magnetic cell separation”, Lab Chip, 15(4): 959–970, (2015).
- [24] Nguyen, N. T., “Micro-magnetofluidics: Interactions between magnetism and fluid flow on the microscale”, Microfluidics and Nanofluidics, 12: 1-6, (2012).
- [25] Ablay, G., Böyük, M. and İçöz, K., “Design, modeling, and control of a horizontal magnetic micromanipulator”, Tranactions of Institute of Measurement and Control, 41(11): 3190-3198, (2019).
- [26] Washburn, E. W., “The dynamics of capillary flow”, Physical Review, 17(3): 273-283, (1921).
- [27] Li, H. “Qualitative Blood Coagulation Test Using Paper-Based Microfluidic Lateral Flow Device”, MSc. Thesis, University of Cincinnati, School of Electrical Engineering and Computing Science, (30-40), 2014.
- [28] Gong, M. M. and Sinton, D., “Turning the Page: Advancing Paper-Based Microfluidics for Broad Diagnostic Application”, Chemical Reviews, 117(12): 8447-8480, (2017).
- [29] Cummins, B. M., Chinthapatla, R., Ligler, F. S. and Walker, G. M., “Time-Dependent Model for Fluid Flow in Porous Materials with Multiple Pore Sizes”, Analytical Chemistry, 89(8): 4377–4381, (2017).
- [30] Walji, N. and MacDonald, B. D., “Influence of Geometry and Surrounding Conditions on Fluid Flow in Paper-Based Devices”, Micromachines, 7(5): 73, (2016).
- [31] Chan, B.D., Mateen, F., Chang, C.L., Icoz, K. and Savran, C. A., “A compact manually actuated micromanipulator”, Journal of Microelectromechanical Systems, 21(1): 7–9, (2012).
- [32] Icoz, K., Soylu, M. C., Canikara, Z. and Unal, E., “Quartz-crystal Microbalance Measurements of CD19 Antibody Immobilization on Gold Surface and Capturing B Lymphoblast Cells: Effect of Surface Functionalization”, Electroanalysis, 30(5): 834–841, (2018).