Research Article
BibTex RIS Cite

Small Size Broadband Printed Antenna for 5G Applications Covering 28 GHz / 38 GHz and 60 GHz Bands

Year 2024, , 211 - 220, 01.03.2024
https://doi.org/10.35378/gujs.1178594

Abstract

This work offers the radiation insight of a compact modified monopole rectangular printed antenna suitable for 5G applications. A Double copper cladded RT Duroid 5880 material sheet with dimensions 4.4×5.0×0.5mm3 is chosen as the base substrate in the offered design with a loss tangent of 0.004 and a dielectric constant of 2.2. In the provided strategy lower-left corner of a rectangular printed antenna is made in the form of a smooth circular curve. After extensive simulation, a circular slot with an elliptical patch is incorporated into this monopole antenna. The designed antenna parameters are adjusted to cover the impedance bandwidth from 21.7 GHz to more than 70.0 GHz. Three resonances at 28.0 GHz, 38.1 GHz and 60.2 GHz were observed in three bands allocated for 5G communication applications. The efficiency and gain values found sustained in the entire bandwidth range. Stable and desired radiation patterns at all three resonant frequencies 28/38/60 GHz prove the suitability of this antenna for recent 5G applications.

Thanks

The authors are thankful to Govt. Mahila Engineering College, Ajmer to provide the necessary computing facility.

References

  • [1] Gavrilovska, L., Rakovic, V., Atanasovski, V., “Visions Towards 5G: Technical requirements and potential enablers”, Wireless Personal Communications, 87: 731–757, (2016). DOI: https://doi.org/10.1007/s11277-015-2632-7.
  • [2] Khanh, Q. V., Hoai, N. V., Manh, L. D., Le, A. N., Jeon, G., “Wireless communication technologies for IoT in 5G: vision, applications, and challenges”, Wireless Communications and Mobile Computing, Article ID 3229294, 2022, 12, (2022). DOI: https://doi.org/10.1155/2022/322 9294
  • [3] https://www.intel.com/content/www/us/en/wireless-network/future-of-5g-technology.html. Access date: 01.09.2022
  • [4] Shafique, K., Khawaja, B. A., Sabir, F., Qazi, S., Mustaqim, M. “Internet of things (IoT) for next-generation smart systems: A review of current challenges, future trends and prospects for emerging 5G-IoT scenarios”, IEEE Access, 8: 23022-23040, (2020). DOI: 10.1109/ACCESS.2020.2970118
  • [5] Kumar, A., Gupta, M., “A review on activities of fifth generation mobile communication system”, Alexandria Engineering Journal, 57 (2): 1125-1135, (2018). DOI: https://doi.org/ 10.1016/ j.aej. 2017.01.043
  • [6] Gunaram, Sharma, G., Deegwal, J., K., Mathur, D., Sharma, V., “Elliptical slot embedded monopole circular patch antenna for 5G applications”, AIP Conference Proceedings, Bikaner, India, 2220, 130073, (2020). DOI: https://doi.org/10.1063/5.0001652
  • [7] Hong, W., “Solving the 5G mobile antenna puzzle: assessing future directions for the 5G mobile antenna paradigm shift”, IEEE Microwave Magazine, 18(7): 86–102, (2017). DOI: 10.1109/MMM.2017.2740538
  • [8] Gunaram, Sharma, V., “Microstrip antenna-inception, progress and current-state of the art review”, Recent Advances in Electrical and Electronic Engineering, 13(6): 769–794, (2020). DOI: http://dx.doi.org/10.2174/2352096513666200110151616
  • [9] Nahar, T., Rawat, S., “Survey of various bandwidth enhancement techniques used for 5G antennas”, International Journal of Microwave and Wireless Technologies, 14(2), 204–224, (2022). DOI: 10.1017/S1759078720001804
  • [10] Mpele, P. M., Mbango, F. M., Konditi, D.B.O., “A small dual band (28/38 GHz) elliptical antenna for 5G applications with DGS”, International Journal of Scientific & Technology Research, 8(10): 353-357, (2019).
  • [11] Hasan, M. N., Bashir, S., Chu, S., “Dual band omnidirectional millimeter wave antenna for 5G communications”, Journal of Electromagnetic Waves and Applications, 33(12): 1581–1590, (2019). DOI: https://doi.org/10.1080/09205071.2019.1617790
  • [12] Kaeib, A. F., Shebani, N. M., Zarek, A. R., “Design and analysis of a slotted microstrip antenna for 5G communication networks at 28 GHz”, 19thInternational Conference on Sciences and Techniques of Automatic Control and Computer Engineering, Sousse, Tunisia, 648-653, (2019).
  • [13] Sharma, V., Gunaram, Deegwal, J. K., Mathur, D., “Super-wideband compact offset elliptical ring patch antenna for 5G applications”, Wireless Personal Communications, 122: 1655–1670, (2022). DOI: https://doi.org/10.1007/s11277-021-08965-4
  • [14] Merlin Teresa, P., Umamaheswari, G., “Compact slotted microstrip antenna for 5G applications operating at 28GHz”, IETE Journal of Research, 1-8, (2020). DOI: https://doi.org/10.1080/03772063.2020.1779620
  • [15] James, J. R., Hall, P.S., “Handbook of Microstrip Antennas”, Peter Peregrinus Ltd, UK, Chapter 2, (1989).
  • [16] EM Simulation Software - CST Studio Suite. (2017).
Year 2024, , 211 - 220, 01.03.2024
https://doi.org/10.35378/gujs.1178594

Abstract

References

  • [1] Gavrilovska, L., Rakovic, V., Atanasovski, V., “Visions Towards 5G: Technical requirements and potential enablers”, Wireless Personal Communications, 87: 731–757, (2016). DOI: https://doi.org/10.1007/s11277-015-2632-7.
  • [2] Khanh, Q. V., Hoai, N. V., Manh, L. D., Le, A. N., Jeon, G., “Wireless communication technologies for IoT in 5G: vision, applications, and challenges”, Wireless Communications and Mobile Computing, Article ID 3229294, 2022, 12, (2022). DOI: https://doi.org/10.1155/2022/322 9294
  • [3] https://www.intel.com/content/www/us/en/wireless-network/future-of-5g-technology.html. Access date: 01.09.2022
  • [4] Shafique, K., Khawaja, B. A., Sabir, F., Qazi, S., Mustaqim, M. “Internet of things (IoT) for next-generation smart systems: A review of current challenges, future trends and prospects for emerging 5G-IoT scenarios”, IEEE Access, 8: 23022-23040, (2020). DOI: 10.1109/ACCESS.2020.2970118
  • [5] Kumar, A., Gupta, M., “A review on activities of fifth generation mobile communication system”, Alexandria Engineering Journal, 57 (2): 1125-1135, (2018). DOI: https://doi.org/ 10.1016/ j.aej. 2017.01.043
  • [6] Gunaram, Sharma, G., Deegwal, J., K., Mathur, D., Sharma, V., “Elliptical slot embedded monopole circular patch antenna for 5G applications”, AIP Conference Proceedings, Bikaner, India, 2220, 130073, (2020). DOI: https://doi.org/10.1063/5.0001652
  • [7] Hong, W., “Solving the 5G mobile antenna puzzle: assessing future directions for the 5G mobile antenna paradigm shift”, IEEE Microwave Magazine, 18(7): 86–102, (2017). DOI: 10.1109/MMM.2017.2740538
  • [8] Gunaram, Sharma, V., “Microstrip antenna-inception, progress and current-state of the art review”, Recent Advances in Electrical and Electronic Engineering, 13(6): 769–794, (2020). DOI: http://dx.doi.org/10.2174/2352096513666200110151616
  • [9] Nahar, T., Rawat, S., “Survey of various bandwidth enhancement techniques used for 5G antennas”, International Journal of Microwave and Wireless Technologies, 14(2), 204–224, (2022). DOI: 10.1017/S1759078720001804
  • [10] Mpele, P. M., Mbango, F. M., Konditi, D.B.O., “A small dual band (28/38 GHz) elliptical antenna for 5G applications with DGS”, International Journal of Scientific & Technology Research, 8(10): 353-357, (2019).
  • [11] Hasan, M. N., Bashir, S., Chu, S., “Dual band omnidirectional millimeter wave antenna for 5G communications”, Journal of Electromagnetic Waves and Applications, 33(12): 1581–1590, (2019). DOI: https://doi.org/10.1080/09205071.2019.1617790
  • [12] Kaeib, A. F., Shebani, N. M., Zarek, A. R., “Design and analysis of a slotted microstrip antenna for 5G communication networks at 28 GHz”, 19thInternational Conference on Sciences and Techniques of Automatic Control and Computer Engineering, Sousse, Tunisia, 648-653, (2019).
  • [13] Sharma, V., Gunaram, Deegwal, J. K., Mathur, D., “Super-wideband compact offset elliptical ring patch antenna for 5G applications”, Wireless Personal Communications, 122: 1655–1670, (2022). DOI: https://doi.org/10.1007/s11277-021-08965-4
  • [14] Merlin Teresa, P., Umamaheswari, G., “Compact slotted microstrip antenna for 5G applications operating at 28GHz”, IETE Journal of Research, 1-8, (2020). DOI: https://doi.org/10.1080/03772063.2020.1779620
  • [15] James, J. R., Hall, P.S., “Handbook of Microstrip Antennas”, Peter Peregrinus Ltd, UK, Chapter 2, (1989).
  • [16] EM Simulation Software - CST Studio Suite. (2017).
There are 16 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Electrical & Electronics Engineering
Authors

Vijay Sharma 0000-0002-9571-5695

Nipun Kumar Mishra 0000-0003-0243-8965

Atul Agarwal 0000-0001-5340-1391

N L Gupta 0000-0002-5342-5673

Early Pub Date July 11, 2023
Publication Date March 1, 2024
Published in Issue Year 2024

Cite

APA Sharma, V., Mishra, N. K., Agarwal, A., Gupta, N. L. (2024). Small Size Broadband Printed Antenna for 5G Applications Covering 28 GHz / 38 GHz and 60 GHz Bands. Gazi University Journal of Science, 37(1), 211-220. https://doi.org/10.35378/gujs.1178594
AMA Sharma V, Mishra NK, Agarwal A, Gupta NL. Small Size Broadband Printed Antenna for 5G Applications Covering 28 GHz / 38 GHz and 60 GHz Bands. Gazi University Journal of Science. March 2024;37(1):211-220. doi:10.35378/gujs.1178594
Chicago Sharma, Vijay, Nipun Kumar Mishra, Atul Agarwal, and N L Gupta. “Small Size Broadband Printed Antenna for 5G Applications Covering 28 GHz / 38 GHz and 60 GHz Bands”. Gazi University Journal of Science 37, no. 1 (March 2024): 211-20. https://doi.org/10.35378/gujs.1178594.
EndNote Sharma V, Mishra NK, Agarwal A, Gupta NL (March 1, 2024) Small Size Broadband Printed Antenna for 5G Applications Covering 28 GHz / 38 GHz and 60 GHz Bands. Gazi University Journal of Science 37 1 211–220.
IEEE V. Sharma, N. K. Mishra, A. Agarwal, and N. L. Gupta, “Small Size Broadband Printed Antenna for 5G Applications Covering 28 GHz / 38 GHz and 60 GHz Bands”, Gazi University Journal of Science, vol. 37, no. 1, pp. 211–220, 2024, doi: 10.35378/gujs.1178594.
ISNAD Sharma, Vijay et al. “Small Size Broadband Printed Antenna for 5G Applications Covering 28 GHz / 38 GHz and 60 GHz Bands”. Gazi University Journal of Science 37/1 (March 2024), 211-220. https://doi.org/10.35378/gujs.1178594.
JAMA Sharma V, Mishra NK, Agarwal A, Gupta NL. Small Size Broadband Printed Antenna for 5G Applications Covering 28 GHz / 38 GHz and 60 GHz Bands. Gazi University Journal of Science. 2024;37:211–220.
MLA Sharma, Vijay et al. “Small Size Broadband Printed Antenna for 5G Applications Covering 28 GHz / 38 GHz and 60 GHz Bands”. Gazi University Journal of Science, vol. 37, no. 1, 2024, pp. 211-20, doi:10.35378/gujs.1178594.
Vancouver Sharma V, Mishra NK, Agarwal A, Gupta NL. Small Size Broadband Printed Antenna for 5G Applications Covering 28 GHz / 38 GHz and 60 GHz Bands. Gazi University Journal of Science. 2024;37(1):211-20.