Research Article
BibTex RIS Cite

Investigation of the Phase Mechanism Behaviors of Fe-Cr-Ni alloy by Molecular Dynamics Simulation

Year 2024, , 1540 - 1550, 01.09.2024
https://doi.org/10.35378/gujs.1297719

Abstract

In the presented study, Fe-Cr-Ni ternary alloy system, which is classified as medium entropy alloys, was modelled using molecular dynamics (MD) simulation method. Model system was built at specific concentration ratios in accordance with the crystal lattice structures in the phase diagrams. The potential energy function based on the Grujicic-Zhou (GZ) type embedded atom method (EAM) was chosen as the potential function suitable for the system. The phase transformation mechanisms of the model system were investigated by applying heating-cooling processes on the most stable structures. In these processes, thermodynamic parameters such as temperature, volume, potential energy and density were calculated. In addition, the phase transformation mechanism and structural properties were analysed using radial distribution functions (RDF). Three-dimensional pictures of MD cells and the number of crystal structures were obtained using the visualization and analysis software via the atomic positions obtained during the transformations. In all these processes, the results obtained by the MD calculation method were interpreted and compared with the experimental data.

References

  • [1] Wang, J., Han, W. Q., “A review of heteroatom doped materials for advanced lithium–sulfur batteries”, Advanced Functional Materials, 32(2): 2107166, (2022).
  • [2] Chen, K., Ma, Z., Li, X., Kang, J., Ma, D., Chu, K., “Single‐Atom Bi Alloyed Pd Metallene for Nitrate Electroreduction to Ammonia”, Advanced Functional Materials, 33: 2209890, (2023).
  • [3] Shi, M., Wang, R., Li, L., Chen, N., Xiao, P., Yan, C., Yan, X., “Redox‐active polymer integrated with MXene for ultra‐stable and fast aqueous proton storage”, Advanced Functional Materials, 33(1): 2209777, (2023).
  • [4] George, E. P., Raabe, D., Ritchie, R. O., “High-entropy alloys”, Nature Reviews Materials”, 4(8): 515-534, (2019).
  • [5] Miracle, D. B., Senkov, O. N., “A critical review of high entropy alloys and related concepts”, Acta Materialia, 122, 448-511, (2017).
  • [6] Wang, J., Jiang, P., Yuan, F., Wu, X., “Chemical medium-range order in a medium-entropy alloy”, Nature Communications, 13(1): 1021, (2022).
  • [7] Yang, G., Kang, J., Carsbring, A., Mu, W., Hedström, P., Kim, J. K., Park, J. H., “Heterogeneous grain size and enhanced hardness by precipitation of the BCC particles in medium entropy Fe–Ni–Cr alloys”, Journal of Alloys and Compounds, 931: 167580, (2023).
  • [8] Nguyen, T. D., Zhang, J., Young, D. J., “Effects of silicon on high temperature corrosion of Fe–Cr and Fe–Cr–Ni alloys in carbon dioxide”, Oxidation of Metals, 81: 549-574, (2014).
  • [9] Miettinen, J., “Thermodynamic reassessment of Fe-Cr-Ni system with emphasis on the iron-rich corner”, Calphad, 23(2): 231-248, (1999).
  • [10] Du, X., Ma, X., Ding, X., Zhang, W., He, Y., “Enhanced high-temperature oxidation resistance of low-cost Fe–Cr–Ni medium entropy alloy by Ce-adulterated”, Journal of Materials Research and Technology, 16:1466-1477, (2022).
  • [11] Blinova, E. N., Glezer, A. M., Libman, M. A., & Pimenov, E. V., “Influence of Severe Plastic Deformations on Martensitic Transformation in Alloys of Fe-Cr-Ni System”, In Key Engineering Materials, 910:802-807, (2022).
  • [12] Mahesh, B. V., Raman, R. S., Koch, C. C., “Bimodal grain size distribution: an effective approach for improving the mechanical and corrosion properties of Fe–Cr–Ni alloys”, Journal of Materials Science, 47:7735-7743, (2012).
  • [13] Du, X., Ma, X., Ding, X., Zhang, W., He, Y., “Enhanced high-temperature oxidation resistance of low-cost Fe–Cr–Ni medium entropy alloy by Ce-adulterated”, Journal of Materials Research and Technology, 16: 1466-1477, (2022).
  • [14] Zhang, C., Wang, C., Zhang, S. L., Ding, Y. L., Ge, Q. L., Su, J., “Effect of aging temperature on the precipitation behavior and mechanical properties of Fe–Cr–Ni maraging stainless steel”, Materials Science and Engineering: A, 806: 140763, (2021).
  • [15] Biskri, Z. E., Rached, H., Bouchear, M., Rached, D., “Computational study of structural, elastic and electronic properties of lithium disilicate (Li2Si2O5) glass-ceramic”, Journal of the Mechanical Behavior of Biomedical Materials, 32: 345-350, (2014).
  • [16] Sengul, S., Celtek, M., Domekeli, U., “Molecular dynamics simulations of glass formation and atomic structures in Zr60Cu20Fe20 ternary bulk metallic alloy”, Vacuum, 136:20-27, (2017).
  • [17] Ozgen, S., Duruk, E., “Molecular dynamics simulation of solidification kinetics of aluminium using Sutton–Chen version of EAM”, Materials Letters, 58(6):1071-1075, (2004).
  • [18] Celik, F. A., Yildiz, A. K., Ozgen, S., “A molecular dynamics study to investigate the local atomic arrangements during martensitic phase transformations”, Molecular Simulation, 37(05):421-429, (2011).
  • [19] Celtek, M., “Atomic structure of Cu60Ti20Zr20 metallic glass under high pressures”, Intermetallics, 143:107493, (2022).
  • [20] Mahata, A. K., Kivy, M. B. “Computational study of nanoscale mechanical properties of Fe–Cr–Ni alloy”, Molecular Simulation, 48(7): 551-567, (2022).
  • [21] Wu, C., Lee, B. J., Su, X., “Modified embedded-atom interatomic potential for Fe-Ni, Cr-Ni and Fe-Cr-Ni systems”, Calphad, 57:98-106, (2017).
  • [22] You, L. J., Hu, L. J., Xie, Y. P., Zhao, S. J., “Influence of Cu precipitation on tensile properties of Fe–Cu–Ni ternary alloy at different temperatures by molecular dynamics simulation”, Computational Materials Science, 118: 236-244, (2016).
  • [23] Das, N. K., Suzuki, K., Ogawa, K., Shoji, T., “Early stage SCC initiation analysis of fcc Fe–Cr–Ni ternary alloy at 288 0C: A quantum chemical molecular dynamics approach”, Corrosion Science, 51(4): 908-913, (2009).
  • [24] Wang, L., Kamachali, R. D., “Density-based grain boundary phase diagrams: Application to Fe-Mn-Cr, Fe-Mn-Ni, Fe-Mn-Co, Fe-Cr-Ni and Fe-Cr-Co alloy systems”, Acta Materialia, 207: 116668, (2021).
  • [25] Kumar, S., Nandi, S., Pattanayek, S. K., Madan, M., Kaushik, B., Kumar, R., Krishna, K. G., “Atomistic characterization of multi nano-crystal formation process in Fe–Cr–Ni alloy during directional solidification: Perspective to the additive manufacturing”, Materials Chemistry and Physics, 308: 128242, (2023).
  • [26] Daw, M. S., Foiles, S. M., Baskes, M. I., “The embedded-atom method: a review of theory and applications”, Materials Science Reports, 9(7-8): 251-310, (1993).
  • [27] Smith, R. W., Was, G. S., “Application of molecular dynamics to the study of hydrogen embrittlement in Ni-Cr-Fe alloys”, Physical Review B, 40(15): 10322, (1989).
  • [28] Fujitsu Limited., 2021, Tokyo, Japan, (www.sicgress.com).
  • [29] Hoover, W. G., “Canonical dynamics: Equilibrium phase-space distributions”, Physical Review A, 31(3):1695, (1985).
  • [30] Tanaka, H., “Relationship among glass-forming ability, fragility, and short-range bond ordering of liquids”, Journal of Non-Crystalline Solids, 351(8-9): 678-690, (2005).
  • [31] Raghavan, V., “Cr-Fe-Ni (chromium-iron-nickel)”, Journal of Phase Equilibria and Diffusion, 30(1): 94-95, (2009).
  • [32] Trady, S., Mazroui, M., Hasnaoui, A., Saadouni, K., “Molecular dynamics study of atomic-level structure in monatomic metallic glass”, Journal of Non-Crystalline Solids, 443: 136-142, (2016).
  • [33] Pei, Q. X., Lu, C., Lee, H. P., “Crystallization of amorphous alloy during isothermal annealing: a molecular dynamics study”, Journal of Physics: Condensed Matter, 17(10):1493, (2005).
  • [34] Stukowski, A., “Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool”, Modelling and Simulation in Materials Science and Engineering, 18(1): 015012, (2009).
Year 2024, , 1540 - 1550, 01.09.2024
https://doi.org/10.35378/gujs.1297719

Abstract

References

  • [1] Wang, J., Han, W. Q., “A review of heteroatom doped materials for advanced lithium–sulfur batteries”, Advanced Functional Materials, 32(2): 2107166, (2022).
  • [2] Chen, K., Ma, Z., Li, X., Kang, J., Ma, D., Chu, K., “Single‐Atom Bi Alloyed Pd Metallene for Nitrate Electroreduction to Ammonia”, Advanced Functional Materials, 33: 2209890, (2023).
  • [3] Shi, M., Wang, R., Li, L., Chen, N., Xiao, P., Yan, C., Yan, X., “Redox‐active polymer integrated with MXene for ultra‐stable and fast aqueous proton storage”, Advanced Functional Materials, 33(1): 2209777, (2023).
  • [4] George, E. P., Raabe, D., Ritchie, R. O., “High-entropy alloys”, Nature Reviews Materials”, 4(8): 515-534, (2019).
  • [5] Miracle, D. B., Senkov, O. N., “A critical review of high entropy alloys and related concepts”, Acta Materialia, 122, 448-511, (2017).
  • [6] Wang, J., Jiang, P., Yuan, F., Wu, X., “Chemical medium-range order in a medium-entropy alloy”, Nature Communications, 13(1): 1021, (2022).
  • [7] Yang, G., Kang, J., Carsbring, A., Mu, W., Hedström, P., Kim, J. K., Park, J. H., “Heterogeneous grain size and enhanced hardness by precipitation of the BCC particles in medium entropy Fe–Ni–Cr alloys”, Journal of Alloys and Compounds, 931: 167580, (2023).
  • [8] Nguyen, T. D., Zhang, J., Young, D. J., “Effects of silicon on high temperature corrosion of Fe–Cr and Fe–Cr–Ni alloys in carbon dioxide”, Oxidation of Metals, 81: 549-574, (2014).
  • [9] Miettinen, J., “Thermodynamic reassessment of Fe-Cr-Ni system with emphasis on the iron-rich corner”, Calphad, 23(2): 231-248, (1999).
  • [10] Du, X., Ma, X., Ding, X., Zhang, W., He, Y., “Enhanced high-temperature oxidation resistance of low-cost Fe–Cr–Ni medium entropy alloy by Ce-adulterated”, Journal of Materials Research and Technology, 16:1466-1477, (2022).
  • [11] Blinova, E. N., Glezer, A. M., Libman, M. A., & Pimenov, E. V., “Influence of Severe Plastic Deformations on Martensitic Transformation in Alloys of Fe-Cr-Ni System”, In Key Engineering Materials, 910:802-807, (2022).
  • [12] Mahesh, B. V., Raman, R. S., Koch, C. C., “Bimodal grain size distribution: an effective approach for improving the mechanical and corrosion properties of Fe–Cr–Ni alloys”, Journal of Materials Science, 47:7735-7743, (2012).
  • [13] Du, X., Ma, X., Ding, X., Zhang, W., He, Y., “Enhanced high-temperature oxidation resistance of low-cost Fe–Cr–Ni medium entropy alloy by Ce-adulterated”, Journal of Materials Research and Technology, 16: 1466-1477, (2022).
  • [14] Zhang, C., Wang, C., Zhang, S. L., Ding, Y. L., Ge, Q. L., Su, J., “Effect of aging temperature on the precipitation behavior and mechanical properties of Fe–Cr–Ni maraging stainless steel”, Materials Science and Engineering: A, 806: 140763, (2021).
  • [15] Biskri, Z. E., Rached, H., Bouchear, M., Rached, D., “Computational study of structural, elastic and electronic properties of lithium disilicate (Li2Si2O5) glass-ceramic”, Journal of the Mechanical Behavior of Biomedical Materials, 32: 345-350, (2014).
  • [16] Sengul, S., Celtek, M., Domekeli, U., “Molecular dynamics simulations of glass formation and atomic structures in Zr60Cu20Fe20 ternary bulk metallic alloy”, Vacuum, 136:20-27, (2017).
  • [17] Ozgen, S., Duruk, E., “Molecular dynamics simulation of solidification kinetics of aluminium using Sutton–Chen version of EAM”, Materials Letters, 58(6):1071-1075, (2004).
  • [18] Celik, F. A., Yildiz, A. K., Ozgen, S., “A molecular dynamics study to investigate the local atomic arrangements during martensitic phase transformations”, Molecular Simulation, 37(05):421-429, (2011).
  • [19] Celtek, M., “Atomic structure of Cu60Ti20Zr20 metallic glass under high pressures”, Intermetallics, 143:107493, (2022).
  • [20] Mahata, A. K., Kivy, M. B. “Computational study of nanoscale mechanical properties of Fe–Cr–Ni alloy”, Molecular Simulation, 48(7): 551-567, (2022).
  • [21] Wu, C., Lee, B. J., Su, X., “Modified embedded-atom interatomic potential for Fe-Ni, Cr-Ni and Fe-Cr-Ni systems”, Calphad, 57:98-106, (2017).
  • [22] You, L. J., Hu, L. J., Xie, Y. P., Zhao, S. J., “Influence of Cu precipitation on tensile properties of Fe–Cu–Ni ternary alloy at different temperatures by molecular dynamics simulation”, Computational Materials Science, 118: 236-244, (2016).
  • [23] Das, N. K., Suzuki, K., Ogawa, K., Shoji, T., “Early stage SCC initiation analysis of fcc Fe–Cr–Ni ternary alloy at 288 0C: A quantum chemical molecular dynamics approach”, Corrosion Science, 51(4): 908-913, (2009).
  • [24] Wang, L., Kamachali, R. D., “Density-based grain boundary phase diagrams: Application to Fe-Mn-Cr, Fe-Mn-Ni, Fe-Mn-Co, Fe-Cr-Ni and Fe-Cr-Co alloy systems”, Acta Materialia, 207: 116668, (2021).
  • [25] Kumar, S., Nandi, S., Pattanayek, S. K., Madan, M., Kaushik, B., Kumar, R., Krishna, K. G., “Atomistic characterization of multi nano-crystal formation process in Fe–Cr–Ni alloy during directional solidification: Perspective to the additive manufacturing”, Materials Chemistry and Physics, 308: 128242, (2023).
  • [26] Daw, M. S., Foiles, S. M., Baskes, M. I., “The embedded-atom method: a review of theory and applications”, Materials Science Reports, 9(7-8): 251-310, (1993).
  • [27] Smith, R. W., Was, G. S., “Application of molecular dynamics to the study of hydrogen embrittlement in Ni-Cr-Fe alloys”, Physical Review B, 40(15): 10322, (1989).
  • [28] Fujitsu Limited., 2021, Tokyo, Japan, (www.sicgress.com).
  • [29] Hoover, W. G., “Canonical dynamics: Equilibrium phase-space distributions”, Physical Review A, 31(3):1695, (1985).
  • [30] Tanaka, H., “Relationship among glass-forming ability, fragility, and short-range bond ordering of liquids”, Journal of Non-Crystalline Solids, 351(8-9): 678-690, (2005).
  • [31] Raghavan, V., “Cr-Fe-Ni (chromium-iron-nickel)”, Journal of Phase Equilibria and Diffusion, 30(1): 94-95, (2009).
  • [32] Trady, S., Mazroui, M., Hasnaoui, A., Saadouni, K., “Molecular dynamics study of atomic-level structure in monatomic metallic glass”, Journal of Non-Crystalline Solids, 443: 136-142, (2016).
  • [33] Pei, Q. X., Lu, C., Lee, H. P., “Crystallization of amorphous alloy during isothermal annealing: a molecular dynamics study”, Journal of Physics: Condensed Matter, 17(10):1493, (2005).
  • [34] Stukowski, A., “Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool”, Modelling and Simulation in Materials Science and Engineering, 18(1): 015012, (2009).
There are 34 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Physics
Authors

Merve Duman 0000-0001-8330-5675

Fatih Ahmet Çelik 0000-0001-7860-5550

Early Pub Date March 22, 2024
Publication Date September 1, 2024
Published in Issue Year 2024

Cite

APA Duman, M., & Çelik, F. A. (2024). Investigation of the Phase Mechanism Behaviors of Fe-Cr-Ni alloy by Molecular Dynamics Simulation. Gazi University Journal of Science, 37(3), 1540-1550. https://doi.org/10.35378/gujs.1297719
AMA Duman M, Çelik FA. Investigation of the Phase Mechanism Behaviors of Fe-Cr-Ni alloy by Molecular Dynamics Simulation. Gazi University Journal of Science. September 2024;37(3):1540-1550. doi:10.35378/gujs.1297719
Chicago Duman, Merve, and Fatih Ahmet Çelik. “Investigation of the Phase Mechanism Behaviors of Fe-Cr-Ni Alloy by Molecular Dynamics Simulation”. Gazi University Journal of Science 37, no. 3 (September 2024): 1540-50. https://doi.org/10.35378/gujs.1297719.
EndNote Duman M, Çelik FA (September 1, 2024) Investigation of the Phase Mechanism Behaviors of Fe-Cr-Ni alloy by Molecular Dynamics Simulation. Gazi University Journal of Science 37 3 1540–1550.
IEEE M. Duman and F. A. Çelik, “Investigation of the Phase Mechanism Behaviors of Fe-Cr-Ni alloy by Molecular Dynamics Simulation”, Gazi University Journal of Science, vol. 37, no. 3, pp. 1540–1550, 2024, doi: 10.35378/gujs.1297719.
ISNAD Duman, Merve - Çelik, Fatih Ahmet. “Investigation of the Phase Mechanism Behaviors of Fe-Cr-Ni Alloy by Molecular Dynamics Simulation”. Gazi University Journal of Science 37/3 (September 2024), 1540-1550. https://doi.org/10.35378/gujs.1297719.
JAMA Duman M, Çelik FA. Investigation of the Phase Mechanism Behaviors of Fe-Cr-Ni alloy by Molecular Dynamics Simulation. Gazi University Journal of Science. 2024;37:1540–1550.
MLA Duman, Merve and Fatih Ahmet Çelik. “Investigation of the Phase Mechanism Behaviors of Fe-Cr-Ni Alloy by Molecular Dynamics Simulation”. Gazi University Journal of Science, vol. 37, no. 3, 2024, pp. 1540-5, doi:10.35378/gujs.1297719.
Vancouver Duman M, Çelik FA. Investigation of the Phase Mechanism Behaviors of Fe-Cr-Ni alloy by Molecular Dynamics Simulation. Gazi University Journal of Science. 2024;37(3):1540-5.