Resonant Tunneling Properties in The Sawtooth Triple Barrier Structures
Year 2024,
, 2025 - 2034, 01.12.2024
Mehmet Batı
,
Gonca Coruh
Abstract
The resonance tunneling properties of sawtooth triple barrier double-well structures were investigated using the non-equilibrium Green's functions method. The dependence of resonance energies on barrier height and width and well widths was investigated. The tunneling feature of the structure under the electric field was investigated. It has been observed that the transmission probability, resonance tunneling energy, and resonance peak intensity are sensitively dependent on the applied electric field and structure parameters. By choosing the appropriate structure, devices that provide resonance transition at the desired energy can be designed in the desired energy level ranges. Thus, this study can provide a basis for switching and oscillator source nano-device designs.
References
- [1] Esaki, L., “New Phenomenon in Narrow Germanium p-n Junctions”, Physical Review, 109: 603-604, (1958).
- [2] Ferry, D.K., Goodnick, S.M., Bird, J., “Transport in nanostructures”, Cambridge University Press, Cambridge, (2009).
- [3] Regan, B.C., Aloni, S., Jensen, K., Zettl, A., “Surface-tension-driven nanoelectromechanical relaxation oscillator”, Applied Physics Letters, 86: 123119, (2005).
- [4] Levi, A.F.J., “Applied Quantum Mechanics”, Cambridge University Press, Cambridge, (2012).
- [5] Wigner, E., “On the quantum correction for thermodynamic equilibrium”, Physical Review, 40, 749-759, (1932).
- [6] Shifren, L., Ferry, D., “Particle Monte Carlo simulation of Wigner function tunneling”, Physics Letters A, 285(3): 217-221 (2001).
- [7] Tsu, R., Esaki, L., “Tunneling in a finite superlattice”, Applied Physics Letters, 22(11): 562-564, (1973).
- [8] Datta, S., “Quantum transport: atom to transistor”, Cambridge University Press, Cambridge, (2005).
- [9] Shahjahan, M., Khatun, M.H., Sawada, K., Ishida, M., “TEM study of RTD structure fabricated with epi-Si/gamma-Al2O3 heterostructure”, Thin Solid Films, 518: 2295-2298, (2010).
- [10] Kitabaysahi, H., Waho, T., Yamamoto, M., “Resonant interband tunneling current in InAs/AlSb/GaSb/AlSb/InAs diodes with extremely thin AlSb barrier layers”, Applied Physics Letters, 71: 512, (1997).
- [11] Harrison, P., “Quantum wells, wires and dots: theoretical and computational physics of semiconductor nanostructures”, John Wiley & Sons, New York, (2010).
- [12] Miyamoto, K., Yamamoto, H., “Resonant tunneling in asymmetrical doublebarrier structures under an applied electric field”, Journal of Applied Physics, 84(1): 311-318, (1998).
- [13] Abdalla, A.S., Eisa, M.H., Alhathlool, R., Aldaghri, O., “Quantum resonant tunneling in semiconductor double-barrier structure”, Optik, 170: 314-320, (2018).
- [14] Encomendero, J., Protasenko, V., Sensale-Rodriguez, B., Fay, P., Rana, F., Jena, D., Xing, H.G., “Broken Symmetry Effects due to Polarization on Resonant Tunneling Transport in Double-Barrier Nitride Heterostructures”, Physical Review Applied, 11: 034032, (2019).
- [15] Almansour, S., “Theoretical study of electronic properties of resonant tunneling diodes based on double and triple AlGaAs barriers”, Results in Physics, 17: 103089, (2020).
- [16] Bati, M., Sakiroglu, S., Sokmen, I., “Electron transport in electrically biased inverse parabolic double-barrier structure”, Chinise Physics B, 25(5): 057307, (2016).
- [17] Ohmukai, M., “Triangular double barrier resonant tunneling”, Materials Science and Engineering: B, 116: 87-90, (2005).
- [18] Bati, M., “Electronic Transport and Resonant Tunneling Properties of Hyperbolic Poschl-Teller Double-Barrier Structures”, Journal of Computational and Theoretical Transport, 48: 66-76, (2019).
- [19] Bati, M., “Resonant tunneling properties of inverted Morse double quantum barrier”, Chinese Journal of Physics, 56: 593-597, (2018).
- [20] Wang, H., Xu, H., Zhang, Y., “A theoretical study of resonant tunneling characteristics in triangular double-barrier diodes”, Physics Letters A, 355(6): 481-488, (2006).
- [21] Luo, M., Yu, G., Xia, L., “Calculation of conductance for triangular multi-barrier structure in a constant electric field”, Superlattices and Microstructures, 83: 168-175, (2015).
- [22] Luo, M., Yu, G., Lin, Y., Su, J., “Calculation of current density for triangular multi-barrier structure in a constant electric field”, Superlattices and Microstructures, 74: 78-84, (2014).
- [23] Wang, H.M., Xu, H.Z., Zhang, Y.F., “A theoretical study of resonant tunneling characteristics in triangular double-barrier diodes”, Physics Letter A, 355: 481-488, (2006).
- [24] Sakata, H., Utaka, K., Matsushima, Y., “Novel bistable device Resonant-tunneling triangular-barrier optoelectronic switch (R-tops)”, Electronics Letters, 30: 1714-1716, (1994).
- [25] Guo, D.F., “Negative-differential-resistance characteristics in a triangularbarrier resonant tunnelling switch”, Semiconductor Science and Technology, 13: 231-235, (1998).
- [26] Leite, T.N., and de Oliveira, H.P., “Tunneling Processes in a Triangular Multibarrier Semiconductor Heterostructure”, IEEE Transactions on Electron Devices, 58: 716-719, (2011).
- [27] Allford, C.P., and Buckle, P.D., “Strain Compensated InGaAs/AlAs Triple Barrier Resonant Tunneling Structures for THz Applications”, IEEE Transactions on Terahertz Science and Technology, 7: 772-779, (2017).
- [28] Sze, S.M. “Physics of Semiconductor Devices”, Wiley, New York, (1981).
Year 2024,
, 2025 - 2034, 01.12.2024
Mehmet Batı
,
Gonca Coruh
Abstract
Testere dişli üçlü bariyerli çift kuyulu yapıların rezonans tünelleme özellikleri, denge dışı Green fonksiyonları yöntemi kullanılarak incelenmiştir. Rezonans enerjilerinin bariyer yüksekliği ve genişliği ile kuyu genişliklerine bağımlılığı araştırılmıştır. Yapının elektrik alan altındaki tünelleme özelliği incelenmiştir. İletim olasılığı, rezonans tünelleme enerjisi ve rezonans pik şiddetinin, uygulanan elektrik alan ve yapı parametrelerine hassas bir şekilde bağlı olduğu gözlemlenmiştir. Uygun yapı seçilerek istenilen enerjide rezonans geçişi sağlayan cihazlar istenilen enerji seviyesi aralıklarında tasarlanabilir. Böylece bu çalışma, anahtarlamalı ve osilatör kaynağı nano-cihaz tasarımlarına temel oluşturabilir.
References
- [1] Esaki, L., “New Phenomenon in Narrow Germanium p-n Junctions”, Physical Review, 109: 603-604, (1958).
- [2] Ferry, D.K., Goodnick, S.M., Bird, J., “Transport in nanostructures”, Cambridge University Press, Cambridge, (2009).
- [3] Regan, B.C., Aloni, S., Jensen, K., Zettl, A., “Surface-tension-driven nanoelectromechanical relaxation oscillator”, Applied Physics Letters, 86: 123119, (2005).
- [4] Levi, A.F.J., “Applied Quantum Mechanics”, Cambridge University Press, Cambridge, (2012).
- [5] Wigner, E., “On the quantum correction for thermodynamic equilibrium”, Physical Review, 40, 749-759, (1932).
- [6] Shifren, L., Ferry, D., “Particle Monte Carlo simulation of Wigner function tunneling”, Physics Letters A, 285(3): 217-221 (2001).
- [7] Tsu, R., Esaki, L., “Tunneling in a finite superlattice”, Applied Physics Letters, 22(11): 562-564, (1973).
- [8] Datta, S., “Quantum transport: atom to transistor”, Cambridge University Press, Cambridge, (2005).
- [9] Shahjahan, M., Khatun, M.H., Sawada, K., Ishida, M., “TEM study of RTD structure fabricated with epi-Si/gamma-Al2O3 heterostructure”, Thin Solid Films, 518: 2295-2298, (2010).
- [10] Kitabaysahi, H., Waho, T., Yamamoto, M., “Resonant interband tunneling current in InAs/AlSb/GaSb/AlSb/InAs diodes with extremely thin AlSb barrier layers”, Applied Physics Letters, 71: 512, (1997).
- [11] Harrison, P., “Quantum wells, wires and dots: theoretical and computational physics of semiconductor nanostructures”, John Wiley & Sons, New York, (2010).
- [12] Miyamoto, K., Yamamoto, H., “Resonant tunneling in asymmetrical doublebarrier structures under an applied electric field”, Journal of Applied Physics, 84(1): 311-318, (1998).
- [13] Abdalla, A.S., Eisa, M.H., Alhathlool, R., Aldaghri, O., “Quantum resonant tunneling in semiconductor double-barrier structure”, Optik, 170: 314-320, (2018).
- [14] Encomendero, J., Protasenko, V., Sensale-Rodriguez, B., Fay, P., Rana, F., Jena, D., Xing, H.G., “Broken Symmetry Effects due to Polarization on Resonant Tunneling Transport in Double-Barrier Nitride Heterostructures”, Physical Review Applied, 11: 034032, (2019).
- [15] Almansour, S., “Theoretical study of electronic properties of resonant tunneling diodes based on double and triple AlGaAs barriers”, Results in Physics, 17: 103089, (2020).
- [16] Bati, M., Sakiroglu, S., Sokmen, I., “Electron transport in electrically biased inverse parabolic double-barrier structure”, Chinise Physics B, 25(5): 057307, (2016).
- [17] Ohmukai, M., “Triangular double barrier resonant tunneling”, Materials Science and Engineering: B, 116: 87-90, (2005).
- [18] Bati, M., “Electronic Transport and Resonant Tunneling Properties of Hyperbolic Poschl-Teller Double-Barrier Structures”, Journal of Computational and Theoretical Transport, 48: 66-76, (2019).
- [19] Bati, M., “Resonant tunneling properties of inverted Morse double quantum barrier”, Chinese Journal of Physics, 56: 593-597, (2018).
- [20] Wang, H., Xu, H., Zhang, Y., “A theoretical study of resonant tunneling characteristics in triangular double-barrier diodes”, Physics Letters A, 355(6): 481-488, (2006).
- [21] Luo, M., Yu, G., Xia, L., “Calculation of conductance for triangular multi-barrier structure in a constant electric field”, Superlattices and Microstructures, 83: 168-175, (2015).
- [22] Luo, M., Yu, G., Lin, Y., Su, J., “Calculation of current density for triangular multi-barrier structure in a constant electric field”, Superlattices and Microstructures, 74: 78-84, (2014).
- [23] Wang, H.M., Xu, H.Z., Zhang, Y.F., “A theoretical study of resonant tunneling characteristics in triangular double-barrier diodes”, Physics Letter A, 355: 481-488, (2006).
- [24] Sakata, H., Utaka, K., Matsushima, Y., “Novel bistable device Resonant-tunneling triangular-barrier optoelectronic switch (R-tops)”, Electronics Letters, 30: 1714-1716, (1994).
- [25] Guo, D.F., “Negative-differential-resistance characteristics in a triangularbarrier resonant tunnelling switch”, Semiconductor Science and Technology, 13: 231-235, (1998).
- [26] Leite, T.N., and de Oliveira, H.P., “Tunneling Processes in a Triangular Multibarrier Semiconductor Heterostructure”, IEEE Transactions on Electron Devices, 58: 716-719, (2011).
- [27] Allford, C.P., and Buckle, P.D., “Strain Compensated InGaAs/AlAs Triple Barrier Resonant Tunneling Structures for THz Applications”, IEEE Transactions on Terahertz Science and Technology, 7: 772-779, (2017).
- [28] Sze, S.M. “Physics of Semiconductor Devices”, Wiley, New York, (1981).