Review
BibTex RIS Cite

Emerging Opportunities and Challenges of Nanoparticles in Nanomedicine

Year 2024, , 1633 - 1652, 01.12.2024
https://doi.org/10.35378/gujs.1325750

Abstract

Nanomedicine encompasses a wide range of utilizations, including medical biological devices, nanoparticles (NPs), nanoelectronic biosensors, and possible future applications of molecular nanotechnologies, such as biological machines. Understanding toxicity and environmental impact problems is a current challenge in nanomedicine. The advancement of NPs in nanomedicine foresees emerging opportunities that may change healthcare by enhancing pharmaceutical effectiveness. This review may reveal novel and improved biomedical significance by delving deeper into advanced growth methodologies and NP applications in nanomedicine. NPs' outstanding physical and chemical characteristics have advanced medical, diagnostic, and screening techniques. The present review offers a current overview of organic and inorganic nanoparticles, highlighting recent advancements, obstacles, and potential applications for nanomedicine. Also, the focus of this review is on a fundamental concept that underlies the creation of novel and successful therapies using NPs in the field of nanomedicine for the human body's lungs, heart, brain, and kidneys. This extensive and insightful information source would be beneficial to the advancement of nanomedicine.

References

  • [1] Xiao, S., and Chen, L., “The emerging landscape of nanotheranostic-based diagnosis and therapy for osteoarthritis”, Journal of Controlled Release, 328: 817–833, (2020).
  • [2] Wang, L., Pan, H., Gu, D. Sun, H., Chen, K., Tan, G., and Pan, W., “A novel carbon dots/thermo-sensitive in situ gel for a composite ocular drug delivery system: characterization, ex-vivo imaging and in vivo evaluation”, International Journal of Molecular Sciences, 22(18): 9934, (2021).
  • [3] Meng, Q., Zhong, S., He, S., Gao, Y., and Cui, X., “Synthesis and characterization of curcumin-loaded pH/reduction dual-responsive folic acid modified carboxymethyl cellulose-based microcapsules for targeted drug delivery”, Journal of Industrial and Engineering Chemistry, 105: 251–258, (2022).
  • [4] LaVan, D. A., McGuire, T., and Langer, R., “Small-scale systems for in vivo drug delivery”, Nature Biotechnology, 21: 1184-1191, (2003).
  • [5] Shevchenko, K. G., Garkushina, I. S., Canfarotta, F., Piletsky, S. A., and Barlev, N. A., “Nano-molecularly imprinted polymers (nanoMIPs) as a novel approach to targeted drug delivery in nanomedicine”, RSC Advances, 12: 3957–3968, (2022).
  • [6] Saeed, S., Khan, S. U., and Gul, R., “Nanoparticle: a promising player in nanomedicine and its theranostic applications for the treatment of cardiovascular diseases”, Current Problems in Cardiology, 48: 101599, (2023).
  • [7] Magagula, S. I., Mohapi, M., Jafta, N., Mochane, M. J., Lebelo, K., and Lenetha, G. G., “Biopolymer-based biodegradable biomaterials for in vivo and in vitro biomedical applications”, Polymeric Biomaterials for Healthcare Applications, 165–210, (2022).
  • [8] Naskar, A., and Kim, K. S., “Photo-stimuli-responsive CuS nanomaterials as cutting-edge platform materials for antibacterial applications”, Pharmaceutics, 14(11): 2343, (2022).
  • [9] Gao, S., Li, Z., and Zhang, H., “Bioinspired green synthesis of nanomaterials and their applications”, Current Nanoscience, 6(5): 452–468, (2010).
  • [10] Wu, D., Zhang, X. D., Liu, P. X., Zhang, L. A., Fan, F. Y., and Guo, M. L., “Gold nanostructure: fabrication, surface modification, targeting imaging, and enhanced radiotherapy”, Current Nanoscience, 7(1): 110–118, (2011).
  • [11] Bhattacharjee, R., Kumar, L., Mukerjee, N., Anand, U., Dhasmana, A., Preetam, S., Bhaumik, S., Sihi, S., Pal, S., Khare, T., Chattopadhyay, S., El-Zahaby, S. A., Alexiou, A., Koshy, E. P., Kumar, V., Malik, S., Dey, A., and Proćków, J., “The emergence of metal oxide nanoparticles (NPs) as a phytomedicine: a two-facet role in plant growth, nano-toxicity and anti-phyto-microbial activity”, Biomedicine and Pharmacotherapy, 155: 113658, (2022).
  • [12] Bhuiyan, M. R. A., and Mamur, H., “A brief review on the synthesis of ZnO nanoparticles for biomedical applications”, Iranian Journal of Materials Science and Engineering, 18(3): 1–27, (2021).
  • [13] Akter, M., Khan, M. N. I., Mamur, H., and Bhuiyan, M. R. A., “Synthesis and characterisation of CdSe QDs by using a chemical solution route”, Micro and Nano Letters, 15(5): 287–290, (2020).
  • [14] Chen, P. C., Chen, C. C., and Chen, S. H., “A review on production, characterization, and photocatalytic applications of TiO2 nanoparticles and nanotubes”, Current Nanoscience, 13(4): 373–393, (2017).
  • [15] Remya, R. R., Julius, A., Suman, T. Y., Mohanavel, V., Karthick, A., Pazhanimuthu, C., Samrot, A. V., and Muhibbullah, M., “Role of nanoparticles in biodegradation and their importance in environmental and biomedical applications”, Journal of Nanomaterials, 2022: (2022).
  • [16] Rai, M., Ingle, A., Gupta, I., Birla, S., Yadav, A., and Abd-Elsalam, K., “Potential role of biological systems in formation of nanoparticles: mechanism of synthesis and biomedical applications”, Current Nanoscience, 9: 576–587, (2013).
  • [17] Kouhkan, M., Ahangar, P., Babaganjeh, L. A., and Allahyari-Devin, M., “Biosynthesis of copper oxide nanoparticles using lactobacillus casei subsp. casei and its anticancer and antibacterial activities”, Current Nanoscience, 16: 101–111, (2019).
  • [18] Doroszkiewicz, J., Groblewska, M., and Mroczko, B., “Molecular biomarkers and their implications for the early diagnosis of selected neurodegenerative diseases”, International Journal of Molecular Sciences, 23(9): 4610, (2022).
  • [19] Díez-Pascual, A. M., “Surface engineering of nanomaterials with polymers, biomolecules, and small ligands for nanomedicine”, Materials, 15(9): 3551, (2022).
  • [20] Shoja Razavi, R., Reza Loghman-Estarki, M., Farhadi-Khouzani, M., Barekat, M., and Jamali, H. “Large scale synthesis of zinc oxide nano- and submicro-structures by pechinis method: effect of ethylene glycol/citric acid mole ratio on structural and optical properties”, Current Nanoscience, 7(5): 807–812, (2011).
  • [21] Mughal, S. S., and Hassan, S. M., “Comparative study of AgO nanoparticles synthesize via biological, chemical and physical methods: a review”, American Journal of Materials Synthesis and Processing, 7(2): 15–28, (2022).
  • [22] Rastogi, A., Singh, P. F., Haraz A., and Barhoum, A., “Biological synthesis of nanoparticles: an environmentally benign approach”, Fundamentals of Nanoparticles: Classifications, Synthesis Methods, Properties and Characterization, 571–604, (2018).
  • [23] Biswas, A., Bayer, I. S., Biris, A. S., Wang, T., Dervishi, E., and Faupel, F., “Advances in top-down and bottom-up surface nanofabrication: techniques, applications & future prospects”, Advances in Colloid and Interface Science, 170(1–2): 2–27, (2012).
  • [24] Eaglesham, D. J., and Cerullo, M., “Dislocation-free stranski krastanow growth of Ge on Si (100)”, Physical Review Letters, 64: 1943–1946, (1990).
  • [25] Prieto, J. E., and Markov, I., “Stranski–krastanov mechanism of growth and the effect of misfit sign on quantum dots nucleation”, Surface Science, 664: 172–184, (2017).
  • [26] Mamur, H., and Bhuiyan, M. R. A., “Characterization of Bi2Te3 nanostructure by using a cost effective chemical solution route”, Iranian Journal of Chemistry and Chemical Engineering, 39(3): 23–33, (2020).
  • [27] Mamur, H., Dilmac, O. F., Korucu, H., and Bhuiyan, M. R. A., “Cost-effective chemical solution synthesis of bismuth telluride nanostructure for thermoelectric applications”, Micro and Nano Letters, 13: 1117–1120, (2018).
  • [28] Liu, Y. K., Akula, K. C., Dandamudi, K. P. R., Liu, Y., Xu, M., Sanchez, A., Zhu, D., and Deng, S., “Effective depolymerization of polyethylene plastic wastes under hydrothermal and solvothermal liquefaction conditions”, Chemical Engineering Journal, 446(4): 137238, (2022).
  • [29] Soltani, N., Saion, E., Erfani, M., Rezaee, K., Bahmanrokh, G., Drummen, G. P. C., Bahrami, A., and Hussein, M. Z., “Influence of the polyvinyl pyrrolidone concentration on particle size and dispersion of ZnS nanoparticles synthesized by microwave irradiation”, International Journal of Molecular Sciences, 13(10): 12412–12427, (2012).
  • [30] Bhuiyan, M. R. A., Saha, D. K., and Firoz Hasan, A. S. M., “Effects of temperature on the structural and optical properties of AgGaSe2 thin films”, Journal of Bangladesh Academy of Sciences, 33(2): 179–188, (2009).
  • [31] Hoq, E., Bhuiyan, M. R. A., and Begum, J., “Influence of thickness on the optical properties of Sb doped ZnO thin films”, Journal of Bangladesh Academy of Sciences, 38(1): 93–96, (2014).
  • [32] Shah, M., Fawcett, D., Sharma, S., Tripathy, S. K., and Poinern, G. E. J., “Green synthesis of metallic nanoparticles via biological entities”, 8(11): 7278–7308, (2015).
  • [33] Alshameri, A. W., and Owais, M., “Antibacterial and cytotoxic potency of the plant-mediated synthesis of metallic nanoparticles Ag NPs and ZnO NPs: a review”, OpenNano, 8: 100077, (2022).
  • [34] Cuong, H. N., Pansambal, S., Ghotekar, S., Oza, R., Hai, N. T. T., and Viet, N. M., “New frontiers in the plant extract mediated biosynthesis of copper oxide (CuO) nanoparticles and their potential applications: a review”, Environmental Research, 203: 111858, (2022).
  • [35] Koli, K., Rohtela, K., and Meena, D., “Comparative study and analysis of structural and optical properties of zinc oxide nanoparticles using neem and mint extract prepared by green synthesis method”, IOP Conference Series: Materials Science and Engineering, 1248: 012065, (2022).
  • [36] Mobaraki, F., Momeni, M., Jahromi, M., Kasmaie, F. M., Barghbani, M., Yazdi, M. E. T., Meshkat, Z., Shandiz, F. H., and Hosseini, S. M., “Apoptotic, antioxidant and cytotoxic properties of synthesized AgNPs using green tea against human testicular embryonic cancer stem cells”, Process Biochemistry, 119: 106–118, (2022).
  • [37] Singh, P., Kim, Y. J., Zhang, D., and Yang, D. C., “Biological synthesis of nanoparticles from plants and microorganisms, trends in biotechnology”, 34(7): 588–599, (2016).
  • [38] Hussain, I., Singh, N. B., Singh, A., Singh, H., and Singh, S. C., “Green synthesis of nanoparticles and its potential application”, Biotechnology Letters, 38: 545–560, (2016).
  • [39] Kharissova, O. V., Dias, H. V. R., Kharisov, B. I., Pérez, B. O., and Pérez, V. M. J., “The greener synthesis of nanoparticles”, Trends in Biotechnology, 31(4): 240–248, (2013).
  • [40] Das, R. K., Pachapur, V. L., Lonappan, L., Naghdi, M., Pulicharla, R., Maiti, S., Cledon, M., L., Dalila, M. A., Sarma, S. J., and Brar, S. K., “Biological synthesis of metallic nanoparticles: plants, animals and microbial aspects”, Nanotechnology for Environmental Engineering, 2: (2017).
  • [41] Alshareeda, A. T., Nur Khatijah, M. Z., and Al-Sowayan, B. S., “Nanotechnology: a revolutionary approach to prevent breast cancer recurrence”, Asian Journal of Surgery, 46(1): 13–17, (2023).
  • [42] Saha, S., Bansal, S., and Khanuja, M., “Classification of nanomaterials and their physical and chemical nature”, Nano-Enabled Agrochemicals in Agriculture, 7–34, (2022).
  • [43] Abd Ellah, N. H., and Abouelmagd, S. A., “Surface functionalization of polymeric nanoparticles for tumor drug delivery: approaches and challenges”, Expert Opinion on Drug Delivery, 14(2): 201–214, (2017).
  • [44] Hald Albertsen, C., Kulkarni, J. A., Witzigmann, D., Lind, M., Petersson, K., and Simonsen, J. B., “The role of lipid components in lipid nanoparticles for vaccines and gene therapy”, Advanced Drug Delivery Reviews, 188: 114416, (2022).
  • [45] Hajebi, S., Yousefiasl, S., Rahimmanesh, I., Dahim, A., Ahmadi, S., Kadumudi, F. B., Rahgozar, N., Amani, S., Kumar, A., Kamrani, E., Rabiee, M., Borzacchiello, A., Wang, X., Rabiee, N., Dolatshahi-Pirouz, A., and Makvandi, P., “Genetically engineered viral vectors and organic-based non-viral nanocarriers for drug delivery applications”, Advanced Healthcare Materials, 11: 1–31, (2022).
  • [46] Dutta, V., Verma, R., Gopalkrishnan, C., Yuan, M. H., Batoo, K. M., Jayavel, R., Chauhan, A., Lin, K. Y. A., Balasubramani, R., and Ghotekar, S., “Bio-inspired synthesis of carbon-based nanomaterials and their potential environmental applications: a state-of-the-art review”, Inorganics, 10(10): 169, (2022).
  • [47] Singh, A., and Amiji, M. M., “Application of nanotechnology in medical diagnosis and imaging”, Current Opinion in Biotechnology, 74: 241–246, (2022).
  • [48] Xu, J. J., Zhang, W. C., Guo, Y. W., Chen, X. Y., and Zhang, Y. N., “Metal nanoparticles as a promising technology in targeted cancer treatment”, Drug Delivery, 29: 664–678, (2022).
  • [49] Tan, Y., Xiong, M., Liu, Q., Yin, Y., Yin, X., Liao, S., Wang, Y., Hu, L., and Zhang, X. B., “Precisely controlling the cellular internalization of DNA-decorated semiconductor polymer nanoparticles for drug delivery”, RSC Advances, 12: 31173–31179, (2022).
  • [50] Liu, R., Luo, C., Pang, Z., Zhang, J., Ruan, S., Wu, M., Wang, L., Sun, T., Li, N., Han, L., Shi, J., Huang, Y., Guo, W., Peng, S., Zhou, W., and Gao, H., “Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment”, Chinese Chemical Letters, 34(2): 107518, (2023).
  • [51] Mohammadzadeh, V., Barani, M., Amiri, M. S., Taghavizadeh Yazdi, M. E., Hassanisaadi, M., Rahdar, A., and Varma, R. S., “Applications of plant-based nanoparticles in nanomedicine: a review”, Sustainable Chemistry and Pharmacy, 25: 100606, (2022).
  • [52] Nikzamir, M., Hanifehpour, Y., Akbarzadeh, A., and Panahi, Y., “Applications of dendrimers in nanomedicine and drug delivery: a review”, Journal of Inorganic and Organometallic Polymers and Materials, 31: 2246–2261, (2021).
  • [53] Lu, H., Wang, J., Wang, T., Zhong, J., Bao, Y., and Hao, H., “Recent progress on nanostructures for drug delivery applications”, Journal of Nanomaterials, 2016: (2016).
  • [54] Choi, Y. H., and Han, H. K., “Nanomedicines: current status and future perspectives in aspect of drug delivery and pharmacokinetics”, Journal of Pharmaceutical Investigation, 48: 43–60, (2018).
  • [55] Bruno, F., Granata, V., Bellisari, F. C., Sgalambro, F., Tommasino, E., Palumbo, P., Arrigoni, F., Cozzi, D., Grassi, F., Brunese, M. C., Pradella, S., Stefano, M. L. M. D. S., Cutolo, C., Di Cesare, E., Splendiani, A., Giovagnoni, A., Miele, V., Grassi, R., Masciocchi, C., and Barile, A., “Advanced magnetic resonance imaging (MRI) techniques: technical principles and applications in nanomedicine”, Cancers, 14(7): 1626, (2022).
  • [56] Ratemi, E., Sultana Shaik, A., Al Faraj, A., and Halwani, R., “Alternative approaches for the treatment of airway diseases: focus on nanoparticle medicine”, Clinical and Experimental Allergy, 46: 1033–1042, (2016).
  • [57] Assolini, J. P., Carloto, A. C. M., Bortoleti, B. T. S., Gonçalves, M. D., Tomiotto Pellissier, F., Feuser, P. E., Cordeiro, A. P., Hermes de Araújo, P. H., Sayer, C., Miranda Sapla, M. M., and Pavanelli, W. R., “Nanomedicine in leishmaniasis: a promising tool for diagnosis, treatment and prevention of disease – an update overview”, European Journal of Pharmacology, 923: 174934, (2022).
  • [58] Doane, T. L., and Burda, C., “The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy”, Chemical Society Reviews, 41(7): 2885–2911, (2012).
  • [59] Shao, H., and Varamini, P., “Breast Cancer bone metastasis: a narrative review of emerging targeted drug delivery systems”, Cells, 11(3): 388, (2022).
  • [60] Verma, S., Goand, U. K., Husain, A., Katekar, R. A., Garg, R., and Gayen, J. R., “Challenges of peptide and protein drug delivery by oral route: current strategies to improve the bioavailability”, Drug Development Research, 82: 927–944, (2021).
  • [61] Gunay, M. S., Ozer, A. Y., and Chalon, S., “Drug delivery systems for imaging and therapy of parkinson’s disease”, Current Neuropharmacology, 14: 376–391, (2016).
  • [62] Ahmad, A., “Pharmacological strategies and recent advancement in nano-drug delivery for targeting asthma”, Life, 12(4): 596, (2022).
  • [63] Huang, Y., Yu, F., Park, Y. S., Wang, J., Shin, M. C., Chung, H. S., and Yang, V. C., “Co-administration of protein drugs with gold nanoparticles to enable percutaneous delivery”, Biomaterials, 31(34): 9086–9091, (2010).
  • [64] Wadhwa, R., Aggarwal, T., Thapliyal, N., Chellappan, D. K., Gupta, G., Gulati, M., Collet, T., Oliver, B., Williams, K., Hansbro, P. M., Dua, K., and Maurya, P. K., “Nanoparticle-based drug delivery for chronic obstructive pulmonary disorder and asthma”, Nanotechnology in Modern Animal Biotechnology, 2019: 59–73, (2019).
  • [65] Newman, S. P., “Delivering drugs to the lungs: the history of repurposing in the treatment of respiratory diseases”, Advanced Drug Delivery Reviews, 133: 5–18, (2018).
  • [66] Nam, J., Won, N., Bang, J., Jin, H., Park, J., Jung, S., Jung, S., Park, Y., and Kim, S. “Surface engineering of inorganic nanoparticles for imaging and therapy”, Advanced Drug Delivery Reviews, 65(5): 622–648, (2013).
  • [67] Wilson, B., and Geetha, K. M., “Lipid nanoparticles in the development of mRNA vaccines for COVID-19”, Journal of Drug Delivery Science and Technology, 74: 103553, (2022).
  • [68] Oberhauser, W., Evangelisti, C., Tiozzo, C., Bartoli, M., Frediani, M., Passaglia, E., and Rosi, L., “Platinum nanoparticles onto pegylated poly(lactic acid) stereocomplex for highly selective hydrogenation of aromatic nitrocompounds to anilines”, Applied Catalysis A: General, 537: 50–58, (2017).
  • [69] Vyas, K., Rathod, M., and Patel, M. M., “Insight on nano drug delivery systems with targeted therapy in treatment of oral cancer”, Nanomedicine: Nanotechnology, Biology and Medicine, 49: 102662, (2023).
  • [70] Batty, C. J., Bachelder, E. M., and Ainslie, K. M., “Historical perspective of clinical nano and microparticle formulations for delivery of therapeutics”, Trends in Molecular Medicine, 27(6): 516–519, (2021).
  • [71] Bhowmik, S., Bhowmick, S., Maiti, K., Chakra, A., Shahi, P., Jain, D., and Rajamannar, T., “Two multicenter phase I randomized trials to compare the bioequivalence and safety of a generic doxorubicin hydrochloride liposome injection with Doxil ® or Caelyx ® in advanced ovarian cancer”, Cancer Chemotherapy and Pharmacology, 82: 521–532, (2018).
  • [72] Haba, M. Ş. C., Şerban, D. N., Şerban, L., Tudorancea, I., M., Haba, R. M., Mitu, O., Illiescu, R., and Tudorancea, I., “Nanomaterial-based drug targeted therapy for cardiovascular diseases: ischemic heart failure and atherosclerosis”, Crystals, 11(10): 1172, (2021).
  • [73] Gaidai, O., Cao, Y., and Loginov, S., “Global cardiovascular diseases death rate prediction”, Current Problems in Cardiology, 48(5): 101622, (2023).
  • [74] Wang, D. K., Rahimi, M., and Filgueira, C. S., “Nanotechnology applications for cardiovascular disease treatment: current and future perspectives”, Nanomedicine: Nanotechnology, Biology, and Medicine, 34: 102387, (2021).
  • [75] Sabu, C., Henna, T. K., Raphey, V. R., Nivitha, K. P., and Pramod, K., “Advanced biosensors for glucose and insulin”, Biosensors and Bioelectronics, 141: 111201, (2019).
  • [76] Liu, J., Liu, Z., Pang, Y., and Zhou, H., “The interaction between nanoparticles and immune system: application in the treatment of inflammatory diseases”, Journal of Nanobiotechnology, 20: 1–25, (2022).
  • [77] Permana, A. D., Nainu, F., Moffatt, K., Larrañeta, E., and Donnelly, R. F., “Recent advances in combination of microneedles and nanomedicines for lymphatic targeted drug delivery”, Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 13(3): 1–22, (2021).
  • [78] Ray, P., Haideri, N., Haque, I., Mohammed, O., Chakraborty, S., Banerjee, S., Quadir, M., Brinker, A., & Banerjee, S., “The impact of nanoparticles on the immune system: a gray zone of nanomedicine, Journal of Immunological Sciences, 5: 19–33, (2021).
  • [79] Ye, K., Li, F., Wang, R., Cen, T., Liu, S., Zhao, Z., Li, R., Xu, L., Zhang, G., Xu, Z., Deng, L., Li, L., Wang, W., Stepanov, A., Wan, Y., Guo, Y., Li, Y., Wang, Y., Tian, Y., Gabibov, A. G., Yan, Y., and Zhang, H., “An armed oncolytic virus enhances the efficacy of tumor-infiltrating lymphocyte therapy by converting tumors to artificial antigen-presenting cells in situ”, Molecular Therapy, 30(12): 3658–3676, (2022).
  • [80] Rehman, H., Ali, W., Zaman Khan, N., Aasim, M., Khan, T., and Ali Khan, A., “Delphinium uncinatum mediated biosynthesis of zinc oxide nanoparticles and in-vitro evaluation of their antioxidant, cytotoxic, antimicrobial, anti-diabetic, anti-inflammatory, and anti-aging activities”, Saudi Journal of Biological Sciences, 30(1): 103485, (2023).
  • [81] Song, F. X., Xu, X., Ding, H., Yu, L., Huang, H., Hao, J., Wu, C., Liang, R., and Zhang, S., “Recent Progress in nanomaterial-based biosensors and theranostic nanomedicine for bladder cancer”, Biosensors, 13(1): 1–39, (2023).
  • [82] Lobatto, M. E., Fuster, V., Fayad, Z. A., and Mulder, W. J. M., “Perspectives and opportunities for nanomedicine in the management of atherosclerosis”, Nature Reviews, 10: 835, (2011).
  • [83] Zhao, P., Li, B., Li, Y., Chen, L., Wang, H., and Ye, L., “DNA-templated ultrasmall bismuth sulfide nanoparticles for photoacoustic imaging of myocardial infarction”, Journal of Colloid and Interface Science, 615: 475–484, (2022).
  • [84] Li, P., Wang, D., Hu, J., and Yang, X., “The role of imaging in targeted delivery of nanomedicine for cancer therapy”, Advanced Drug Delivery Reviews, 189: 114447, (2022).
  • [85] Wangaryattawanich, P., Rutman, A. M., Petcharunpaisan, S., and Mossa-Basha, M., “Incidental findings on brain magnetic resonance imaging (MRI) in adults: a review of imaging spectrum, clinical significance, and management”, British Journal of Radiology, 96(1142): 1–13, (2023).
  • [86] Quader, S., Kataoka, K., and Cabral, H., “Nanomedicine for brain cancer”, Advanced Drug Delivery Reviews, 182: 114115, (2022).
  • [87] Mukhtar, M., Bilal, M., Rahdar, A., Barani, M., Arshad, R., Behl, T., Brisc, C., and Banica, F., Bungau, S., “Nanomaterials for diagnosis and treatment of brain cancer: recent updates”, Chemosensors, 8(4): 1–31, (2020).
  • [88] Liao, C., Wu, Z., Lin, C., Chen, X., Zou, Y., Zhao, W., Li, X., Huang, G., Xu, B., Briganti, G. E., Qi, Y., Wang, X., Zeng, T., Wuethrich, A., and Zou, H., “Nurturing the marriages of urinary liquid biopsies and nano‐diagnostics for precision urinalysis of prostate cancer”, Smart Medicine, 2(1): e20220020, (2023).
  • [89] Gomez-Marquez, J., and Hamad-Schifferli, K., “Local development of nanotechnology-based diagnostics”, Nature Nanotechnology, 16: 484–486, (2021).
  • [90] Khademi, R., Mohammadi, Z., Khademi, R., Saghazadeh, A., and Rezaei, N., “Nanotechnology-based diagnostics and therapeutics in acute lymphoblastic leukemia: a systematic review of preclinical studies”, Nanoscale Advances, 5: 571–595, (2023).
  • [91] Zhao, X., Xu, S., Jiang, Y., Wang, C., ur Rehman, S., Ji, S., Wang, J., Tao, T., Xu, H., Chen, R., Cai, Y., Jiang, Y., Wang, H., Ma, K., and Wang, J., “BSA-magnetite nanotorpedo for safe and efficient delivery of chemotherapy drugs”, Chemical Engineering Journal, 454(3): 140440, (2023).
  • [92] Wu, R., Wang, K., Gai, Y., Li, M., Wang, J., Wang, C., Zhang, Y., Xiao, Z., Jiang, D., Gao, Z., and Xia, X., “Nanomedicine for renal cell carcinoma: imaging, treatment and beyond”, Journal of Nanobiotechnology, 21: 1–24, (2023).
  • [93] Chedea, V. S., Palade, L. M., Pelmus, R. S., Dragomir, C., and Taranu, I., “Red grape pomace rich in polyphenols diet increases the antioxidant status in key organs— kidneys, liver, and spleen of piglets”, Animals, 9(4): 149, (2019).
  • [94] Wang, Z., Liu, A., Li, X., Guan, L., Xing, H., He, L., Fang, L., Zvyagin, A. V., Yang, X., Yang, B., and Lin, Q., “Multifunctional nanoprobe for multi-mode imaging and diagnosis of metastatic prostate cancer”, Talanta, 256: 124255, (2023).
  • [95] Çifci, S. A., Yalçın, N., Aksu, T., and Demirkan, K., “Liposomal amphotericin B related late-onset hyperphosphatemia in a pediatric patient with acute myeloid leukemia”, Journal of Oncology Pharmacy Practice, 28(6): 1478–1482, (2022).
  • [96] Dellapasqua, S., Aliaga, P. T., Munzone, E., Bagnardi, V., Pagan, E., Montagna, E., Cancello, G., Ghisini, R., Sangalli, C., Negri, M., Mazza, M., Iorfida, M., Cardillo, A., Sciandivasci, A., Bianco, N., De Maio, A. P., Milano, M., Campennì, G. M., Sansonno, L., Viale, G., Morra, A., Leonardi, M. C., Galimberti, V., Veronesi, P., and Colleoni, M., “Pegylated liposomal doxorubicin (Caelyx®) as adjuvant treatment in early-stage luminal b-like breast cancer: a feasibility phase II trial”, Current Oncology, 28(6): 5167–5178, (2021).
  • [97] Mukai, H., Ogawa, K., Kato, N., and Kawakami, S., “Recent advances in lipid nanoparticles for delivery of nucleic acid, mRNA, and gene editing-based therapeutics”, Drug Metabolism and Pharmacokinetics, 44: 100450, (2022).
  • [98] Han, Y., Pan, J., Ma, Y., Zhou, D., and Xu, W., “Protein-based biomaterials for combating viral infections: Current status and future prospects for development”, Biosafety and Health, 4: 87–94, (2022).
  • [99] Peng, C., Kuang, L., Zhao, J., Ross, A. E., Wang, Z., and Ciolino, J. B., “Bibliometric and visualized analysis of ocular drug delivery from 2001 to 2020”, Journal of Controlled Release, 345: 625–645, (2022).
  • [100] Vittala Murthy, N. T., Paul, S. K., Chauhan, H, and Singh, S., “Polymeric nanoparticles for transdermal delivery of polyphenols”, Current Drug Delivery, 19(2): 182–191, (2022).
  • [101] Uddin, S., Rafiqul Islam, M., Md Moshikur, R., Wakabayashi, R., Kamiya, N., Moniruzzaman, M., and Goto, M., “Transdermal delivery of antigenic protein using ionic liquid-based nanocarriers for tumor immunotherapy”, ACS Applied Bio Materials, 5: 2586–2597, (2022).
  • [102] Yaqoob, S. B., Adnan, R., Rameez Khan, R. M., and Rashid, M., “Gold, silver, and palladium nanoparticles: A chemical tool for biomedical applications”, Frontiers in Chemistry, 8: 376, (2020).
Year 2024, , 1633 - 1652, 01.12.2024
https://doi.org/10.35378/gujs.1325750

Abstract

References

  • [1] Xiao, S., and Chen, L., “The emerging landscape of nanotheranostic-based diagnosis and therapy for osteoarthritis”, Journal of Controlled Release, 328: 817–833, (2020).
  • [2] Wang, L., Pan, H., Gu, D. Sun, H., Chen, K., Tan, G., and Pan, W., “A novel carbon dots/thermo-sensitive in situ gel for a composite ocular drug delivery system: characterization, ex-vivo imaging and in vivo evaluation”, International Journal of Molecular Sciences, 22(18): 9934, (2021).
  • [3] Meng, Q., Zhong, S., He, S., Gao, Y., and Cui, X., “Synthesis and characterization of curcumin-loaded pH/reduction dual-responsive folic acid modified carboxymethyl cellulose-based microcapsules for targeted drug delivery”, Journal of Industrial and Engineering Chemistry, 105: 251–258, (2022).
  • [4] LaVan, D. A., McGuire, T., and Langer, R., “Small-scale systems for in vivo drug delivery”, Nature Biotechnology, 21: 1184-1191, (2003).
  • [5] Shevchenko, K. G., Garkushina, I. S., Canfarotta, F., Piletsky, S. A., and Barlev, N. A., “Nano-molecularly imprinted polymers (nanoMIPs) as a novel approach to targeted drug delivery in nanomedicine”, RSC Advances, 12: 3957–3968, (2022).
  • [6] Saeed, S., Khan, S. U., and Gul, R., “Nanoparticle: a promising player in nanomedicine and its theranostic applications for the treatment of cardiovascular diseases”, Current Problems in Cardiology, 48: 101599, (2023).
  • [7] Magagula, S. I., Mohapi, M., Jafta, N., Mochane, M. J., Lebelo, K., and Lenetha, G. G., “Biopolymer-based biodegradable biomaterials for in vivo and in vitro biomedical applications”, Polymeric Biomaterials for Healthcare Applications, 165–210, (2022).
  • [8] Naskar, A., and Kim, K. S., “Photo-stimuli-responsive CuS nanomaterials as cutting-edge platform materials for antibacterial applications”, Pharmaceutics, 14(11): 2343, (2022).
  • [9] Gao, S., Li, Z., and Zhang, H., “Bioinspired green synthesis of nanomaterials and their applications”, Current Nanoscience, 6(5): 452–468, (2010).
  • [10] Wu, D., Zhang, X. D., Liu, P. X., Zhang, L. A., Fan, F. Y., and Guo, M. L., “Gold nanostructure: fabrication, surface modification, targeting imaging, and enhanced radiotherapy”, Current Nanoscience, 7(1): 110–118, (2011).
  • [11] Bhattacharjee, R., Kumar, L., Mukerjee, N., Anand, U., Dhasmana, A., Preetam, S., Bhaumik, S., Sihi, S., Pal, S., Khare, T., Chattopadhyay, S., El-Zahaby, S. A., Alexiou, A., Koshy, E. P., Kumar, V., Malik, S., Dey, A., and Proćków, J., “The emergence of metal oxide nanoparticles (NPs) as a phytomedicine: a two-facet role in plant growth, nano-toxicity and anti-phyto-microbial activity”, Biomedicine and Pharmacotherapy, 155: 113658, (2022).
  • [12] Bhuiyan, M. R. A., and Mamur, H., “A brief review on the synthesis of ZnO nanoparticles for biomedical applications”, Iranian Journal of Materials Science and Engineering, 18(3): 1–27, (2021).
  • [13] Akter, M., Khan, M. N. I., Mamur, H., and Bhuiyan, M. R. A., “Synthesis and characterisation of CdSe QDs by using a chemical solution route”, Micro and Nano Letters, 15(5): 287–290, (2020).
  • [14] Chen, P. C., Chen, C. C., and Chen, S. H., “A review on production, characterization, and photocatalytic applications of TiO2 nanoparticles and nanotubes”, Current Nanoscience, 13(4): 373–393, (2017).
  • [15] Remya, R. R., Julius, A., Suman, T. Y., Mohanavel, V., Karthick, A., Pazhanimuthu, C., Samrot, A. V., and Muhibbullah, M., “Role of nanoparticles in biodegradation and their importance in environmental and biomedical applications”, Journal of Nanomaterials, 2022: (2022).
  • [16] Rai, M., Ingle, A., Gupta, I., Birla, S., Yadav, A., and Abd-Elsalam, K., “Potential role of biological systems in formation of nanoparticles: mechanism of synthesis and biomedical applications”, Current Nanoscience, 9: 576–587, (2013).
  • [17] Kouhkan, M., Ahangar, P., Babaganjeh, L. A., and Allahyari-Devin, M., “Biosynthesis of copper oxide nanoparticles using lactobacillus casei subsp. casei and its anticancer and antibacterial activities”, Current Nanoscience, 16: 101–111, (2019).
  • [18] Doroszkiewicz, J., Groblewska, M., and Mroczko, B., “Molecular biomarkers and their implications for the early diagnosis of selected neurodegenerative diseases”, International Journal of Molecular Sciences, 23(9): 4610, (2022).
  • [19] Díez-Pascual, A. M., “Surface engineering of nanomaterials with polymers, biomolecules, and small ligands for nanomedicine”, Materials, 15(9): 3551, (2022).
  • [20] Shoja Razavi, R., Reza Loghman-Estarki, M., Farhadi-Khouzani, M., Barekat, M., and Jamali, H. “Large scale synthesis of zinc oxide nano- and submicro-structures by pechinis method: effect of ethylene glycol/citric acid mole ratio on structural and optical properties”, Current Nanoscience, 7(5): 807–812, (2011).
  • [21] Mughal, S. S., and Hassan, S. M., “Comparative study of AgO nanoparticles synthesize via biological, chemical and physical methods: a review”, American Journal of Materials Synthesis and Processing, 7(2): 15–28, (2022).
  • [22] Rastogi, A., Singh, P. F., Haraz A., and Barhoum, A., “Biological synthesis of nanoparticles: an environmentally benign approach”, Fundamentals of Nanoparticles: Classifications, Synthesis Methods, Properties and Characterization, 571–604, (2018).
  • [23] Biswas, A., Bayer, I. S., Biris, A. S., Wang, T., Dervishi, E., and Faupel, F., “Advances in top-down and bottom-up surface nanofabrication: techniques, applications & future prospects”, Advances in Colloid and Interface Science, 170(1–2): 2–27, (2012).
  • [24] Eaglesham, D. J., and Cerullo, M., “Dislocation-free stranski krastanow growth of Ge on Si (100)”, Physical Review Letters, 64: 1943–1946, (1990).
  • [25] Prieto, J. E., and Markov, I., “Stranski–krastanov mechanism of growth and the effect of misfit sign on quantum dots nucleation”, Surface Science, 664: 172–184, (2017).
  • [26] Mamur, H., and Bhuiyan, M. R. A., “Characterization of Bi2Te3 nanostructure by using a cost effective chemical solution route”, Iranian Journal of Chemistry and Chemical Engineering, 39(3): 23–33, (2020).
  • [27] Mamur, H., Dilmac, O. F., Korucu, H., and Bhuiyan, M. R. A., “Cost-effective chemical solution synthesis of bismuth telluride nanostructure for thermoelectric applications”, Micro and Nano Letters, 13: 1117–1120, (2018).
  • [28] Liu, Y. K., Akula, K. C., Dandamudi, K. P. R., Liu, Y., Xu, M., Sanchez, A., Zhu, D., and Deng, S., “Effective depolymerization of polyethylene plastic wastes under hydrothermal and solvothermal liquefaction conditions”, Chemical Engineering Journal, 446(4): 137238, (2022).
  • [29] Soltani, N., Saion, E., Erfani, M., Rezaee, K., Bahmanrokh, G., Drummen, G. P. C., Bahrami, A., and Hussein, M. Z., “Influence of the polyvinyl pyrrolidone concentration on particle size and dispersion of ZnS nanoparticles synthesized by microwave irradiation”, International Journal of Molecular Sciences, 13(10): 12412–12427, (2012).
  • [30] Bhuiyan, M. R. A., Saha, D. K., and Firoz Hasan, A. S. M., “Effects of temperature on the structural and optical properties of AgGaSe2 thin films”, Journal of Bangladesh Academy of Sciences, 33(2): 179–188, (2009).
  • [31] Hoq, E., Bhuiyan, M. R. A., and Begum, J., “Influence of thickness on the optical properties of Sb doped ZnO thin films”, Journal of Bangladesh Academy of Sciences, 38(1): 93–96, (2014).
  • [32] Shah, M., Fawcett, D., Sharma, S., Tripathy, S. K., and Poinern, G. E. J., “Green synthesis of metallic nanoparticles via biological entities”, 8(11): 7278–7308, (2015).
  • [33] Alshameri, A. W., and Owais, M., “Antibacterial and cytotoxic potency of the plant-mediated synthesis of metallic nanoparticles Ag NPs and ZnO NPs: a review”, OpenNano, 8: 100077, (2022).
  • [34] Cuong, H. N., Pansambal, S., Ghotekar, S., Oza, R., Hai, N. T. T., and Viet, N. M., “New frontiers in the plant extract mediated biosynthesis of copper oxide (CuO) nanoparticles and their potential applications: a review”, Environmental Research, 203: 111858, (2022).
  • [35] Koli, K., Rohtela, K., and Meena, D., “Comparative study and analysis of structural and optical properties of zinc oxide nanoparticles using neem and mint extract prepared by green synthesis method”, IOP Conference Series: Materials Science and Engineering, 1248: 012065, (2022).
  • [36] Mobaraki, F., Momeni, M., Jahromi, M., Kasmaie, F. M., Barghbani, M., Yazdi, M. E. T., Meshkat, Z., Shandiz, F. H., and Hosseini, S. M., “Apoptotic, antioxidant and cytotoxic properties of synthesized AgNPs using green tea against human testicular embryonic cancer stem cells”, Process Biochemistry, 119: 106–118, (2022).
  • [37] Singh, P., Kim, Y. J., Zhang, D., and Yang, D. C., “Biological synthesis of nanoparticles from plants and microorganisms, trends in biotechnology”, 34(7): 588–599, (2016).
  • [38] Hussain, I., Singh, N. B., Singh, A., Singh, H., and Singh, S. C., “Green synthesis of nanoparticles and its potential application”, Biotechnology Letters, 38: 545–560, (2016).
  • [39] Kharissova, O. V., Dias, H. V. R., Kharisov, B. I., Pérez, B. O., and Pérez, V. M. J., “The greener synthesis of nanoparticles”, Trends in Biotechnology, 31(4): 240–248, (2013).
  • [40] Das, R. K., Pachapur, V. L., Lonappan, L., Naghdi, M., Pulicharla, R., Maiti, S., Cledon, M., L., Dalila, M. A., Sarma, S. J., and Brar, S. K., “Biological synthesis of metallic nanoparticles: plants, animals and microbial aspects”, Nanotechnology for Environmental Engineering, 2: (2017).
  • [41] Alshareeda, A. T., Nur Khatijah, M. Z., and Al-Sowayan, B. S., “Nanotechnology: a revolutionary approach to prevent breast cancer recurrence”, Asian Journal of Surgery, 46(1): 13–17, (2023).
  • [42] Saha, S., Bansal, S., and Khanuja, M., “Classification of nanomaterials and their physical and chemical nature”, Nano-Enabled Agrochemicals in Agriculture, 7–34, (2022).
  • [43] Abd Ellah, N. H., and Abouelmagd, S. A., “Surface functionalization of polymeric nanoparticles for tumor drug delivery: approaches and challenges”, Expert Opinion on Drug Delivery, 14(2): 201–214, (2017).
  • [44] Hald Albertsen, C., Kulkarni, J. A., Witzigmann, D., Lind, M., Petersson, K., and Simonsen, J. B., “The role of lipid components in lipid nanoparticles for vaccines and gene therapy”, Advanced Drug Delivery Reviews, 188: 114416, (2022).
  • [45] Hajebi, S., Yousefiasl, S., Rahimmanesh, I., Dahim, A., Ahmadi, S., Kadumudi, F. B., Rahgozar, N., Amani, S., Kumar, A., Kamrani, E., Rabiee, M., Borzacchiello, A., Wang, X., Rabiee, N., Dolatshahi-Pirouz, A., and Makvandi, P., “Genetically engineered viral vectors and organic-based non-viral nanocarriers for drug delivery applications”, Advanced Healthcare Materials, 11: 1–31, (2022).
  • [46] Dutta, V., Verma, R., Gopalkrishnan, C., Yuan, M. H., Batoo, K. M., Jayavel, R., Chauhan, A., Lin, K. Y. A., Balasubramani, R., and Ghotekar, S., “Bio-inspired synthesis of carbon-based nanomaterials and their potential environmental applications: a state-of-the-art review”, Inorganics, 10(10): 169, (2022).
  • [47] Singh, A., and Amiji, M. M., “Application of nanotechnology in medical diagnosis and imaging”, Current Opinion in Biotechnology, 74: 241–246, (2022).
  • [48] Xu, J. J., Zhang, W. C., Guo, Y. W., Chen, X. Y., and Zhang, Y. N., “Metal nanoparticles as a promising technology in targeted cancer treatment”, Drug Delivery, 29: 664–678, (2022).
  • [49] Tan, Y., Xiong, M., Liu, Q., Yin, Y., Yin, X., Liao, S., Wang, Y., Hu, L., and Zhang, X. B., “Precisely controlling the cellular internalization of DNA-decorated semiconductor polymer nanoparticles for drug delivery”, RSC Advances, 12: 31173–31179, (2022).
  • [50] Liu, R., Luo, C., Pang, Z., Zhang, J., Ruan, S., Wu, M., Wang, L., Sun, T., Li, N., Han, L., Shi, J., Huang, Y., Guo, W., Peng, S., Zhou, W., and Gao, H., “Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment”, Chinese Chemical Letters, 34(2): 107518, (2023).
  • [51] Mohammadzadeh, V., Barani, M., Amiri, M. S., Taghavizadeh Yazdi, M. E., Hassanisaadi, M., Rahdar, A., and Varma, R. S., “Applications of plant-based nanoparticles in nanomedicine: a review”, Sustainable Chemistry and Pharmacy, 25: 100606, (2022).
  • [52] Nikzamir, M., Hanifehpour, Y., Akbarzadeh, A., and Panahi, Y., “Applications of dendrimers in nanomedicine and drug delivery: a review”, Journal of Inorganic and Organometallic Polymers and Materials, 31: 2246–2261, (2021).
  • [53] Lu, H., Wang, J., Wang, T., Zhong, J., Bao, Y., and Hao, H., “Recent progress on nanostructures for drug delivery applications”, Journal of Nanomaterials, 2016: (2016).
  • [54] Choi, Y. H., and Han, H. K., “Nanomedicines: current status and future perspectives in aspect of drug delivery and pharmacokinetics”, Journal of Pharmaceutical Investigation, 48: 43–60, (2018).
  • [55] Bruno, F., Granata, V., Bellisari, F. C., Sgalambro, F., Tommasino, E., Palumbo, P., Arrigoni, F., Cozzi, D., Grassi, F., Brunese, M. C., Pradella, S., Stefano, M. L. M. D. S., Cutolo, C., Di Cesare, E., Splendiani, A., Giovagnoni, A., Miele, V., Grassi, R., Masciocchi, C., and Barile, A., “Advanced magnetic resonance imaging (MRI) techniques: technical principles and applications in nanomedicine”, Cancers, 14(7): 1626, (2022).
  • [56] Ratemi, E., Sultana Shaik, A., Al Faraj, A., and Halwani, R., “Alternative approaches for the treatment of airway diseases: focus on nanoparticle medicine”, Clinical and Experimental Allergy, 46: 1033–1042, (2016).
  • [57] Assolini, J. P., Carloto, A. C. M., Bortoleti, B. T. S., Gonçalves, M. D., Tomiotto Pellissier, F., Feuser, P. E., Cordeiro, A. P., Hermes de Araújo, P. H., Sayer, C., Miranda Sapla, M. M., and Pavanelli, W. R., “Nanomedicine in leishmaniasis: a promising tool for diagnosis, treatment and prevention of disease – an update overview”, European Journal of Pharmacology, 923: 174934, (2022).
  • [58] Doane, T. L., and Burda, C., “The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy”, Chemical Society Reviews, 41(7): 2885–2911, (2012).
  • [59] Shao, H., and Varamini, P., “Breast Cancer bone metastasis: a narrative review of emerging targeted drug delivery systems”, Cells, 11(3): 388, (2022).
  • [60] Verma, S., Goand, U. K., Husain, A., Katekar, R. A., Garg, R., and Gayen, J. R., “Challenges of peptide and protein drug delivery by oral route: current strategies to improve the bioavailability”, Drug Development Research, 82: 927–944, (2021).
  • [61] Gunay, M. S., Ozer, A. Y., and Chalon, S., “Drug delivery systems for imaging and therapy of parkinson’s disease”, Current Neuropharmacology, 14: 376–391, (2016).
  • [62] Ahmad, A., “Pharmacological strategies and recent advancement in nano-drug delivery for targeting asthma”, Life, 12(4): 596, (2022).
  • [63] Huang, Y., Yu, F., Park, Y. S., Wang, J., Shin, M. C., Chung, H. S., and Yang, V. C., “Co-administration of protein drugs with gold nanoparticles to enable percutaneous delivery”, Biomaterials, 31(34): 9086–9091, (2010).
  • [64] Wadhwa, R., Aggarwal, T., Thapliyal, N., Chellappan, D. K., Gupta, G., Gulati, M., Collet, T., Oliver, B., Williams, K., Hansbro, P. M., Dua, K., and Maurya, P. K., “Nanoparticle-based drug delivery for chronic obstructive pulmonary disorder and asthma”, Nanotechnology in Modern Animal Biotechnology, 2019: 59–73, (2019).
  • [65] Newman, S. P., “Delivering drugs to the lungs: the history of repurposing in the treatment of respiratory diseases”, Advanced Drug Delivery Reviews, 133: 5–18, (2018).
  • [66] Nam, J., Won, N., Bang, J., Jin, H., Park, J., Jung, S., Jung, S., Park, Y., and Kim, S. “Surface engineering of inorganic nanoparticles for imaging and therapy”, Advanced Drug Delivery Reviews, 65(5): 622–648, (2013).
  • [67] Wilson, B., and Geetha, K. M., “Lipid nanoparticles in the development of mRNA vaccines for COVID-19”, Journal of Drug Delivery Science and Technology, 74: 103553, (2022).
  • [68] Oberhauser, W., Evangelisti, C., Tiozzo, C., Bartoli, M., Frediani, M., Passaglia, E., and Rosi, L., “Platinum nanoparticles onto pegylated poly(lactic acid) stereocomplex for highly selective hydrogenation of aromatic nitrocompounds to anilines”, Applied Catalysis A: General, 537: 50–58, (2017).
  • [69] Vyas, K., Rathod, M., and Patel, M. M., “Insight on nano drug delivery systems with targeted therapy in treatment of oral cancer”, Nanomedicine: Nanotechnology, Biology and Medicine, 49: 102662, (2023).
  • [70] Batty, C. J., Bachelder, E. M., and Ainslie, K. M., “Historical perspective of clinical nano and microparticle formulations for delivery of therapeutics”, Trends in Molecular Medicine, 27(6): 516–519, (2021).
  • [71] Bhowmik, S., Bhowmick, S., Maiti, K., Chakra, A., Shahi, P., Jain, D., and Rajamannar, T., “Two multicenter phase I randomized trials to compare the bioequivalence and safety of a generic doxorubicin hydrochloride liposome injection with Doxil ® or Caelyx ® in advanced ovarian cancer”, Cancer Chemotherapy and Pharmacology, 82: 521–532, (2018).
  • [72] Haba, M. Ş. C., Şerban, D. N., Şerban, L., Tudorancea, I., M., Haba, R. M., Mitu, O., Illiescu, R., and Tudorancea, I., “Nanomaterial-based drug targeted therapy for cardiovascular diseases: ischemic heart failure and atherosclerosis”, Crystals, 11(10): 1172, (2021).
  • [73] Gaidai, O., Cao, Y., and Loginov, S., “Global cardiovascular diseases death rate prediction”, Current Problems in Cardiology, 48(5): 101622, (2023).
  • [74] Wang, D. K., Rahimi, M., and Filgueira, C. S., “Nanotechnology applications for cardiovascular disease treatment: current and future perspectives”, Nanomedicine: Nanotechnology, Biology, and Medicine, 34: 102387, (2021).
  • [75] Sabu, C., Henna, T. K., Raphey, V. R., Nivitha, K. P., and Pramod, K., “Advanced biosensors for glucose and insulin”, Biosensors and Bioelectronics, 141: 111201, (2019).
  • [76] Liu, J., Liu, Z., Pang, Y., and Zhou, H., “The interaction between nanoparticles and immune system: application in the treatment of inflammatory diseases”, Journal of Nanobiotechnology, 20: 1–25, (2022).
  • [77] Permana, A. D., Nainu, F., Moffatt, K., Larrañeta, E., and Donnelly, R. F., “Recent advances in combination of microneedles and nanomedicines for lymphatic targeted drug delivery”, Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 13(3): 1–22, (2021).
  • [78] Ray, P., Haideri, N., Haque, I., Mohammed, O., Chakraborty, S., Banerjee, S., Quadir, M., Brinker, A., & Banerjee, S., “The impact of nanoparticles on the immune system: a gray zone of nanomedicine, Journal of Immunological Sciences, 5: 19–33, (2021).
  • [79] Ye, K., Li, F., Wang, R., Cen, T., Liu, S., Zhao, Z., Li, R., Xu, L., Zhang, G., Xu, Z., Deng, L., Li, L., Wang, W., Stepanov, A., Wan, Y., Guo, Y., Li, Y., Wang, Y., Tian, Y., Gabibov, A. G., Yan, Y., and Zhang, H., “An armed oncolytic virus enhances the efficacy of tumor-infiltrating lymphocyte therapy by converting tumors to artificial antigen-presenting cells in situ”, Molecular Therapy, 30(12): 3658–3676, (2022).
  • [80] Rehman, H., Ali, W., Zaman Khan, N., Aasim, M., Khan, T., and Ali Khan, A., “Delphinium uncinatum mediated biosynthesis of zinc oxide nanoparticles and in-vitro evaluation of their antioxidant, cytotoxic, antimicrobial, anti-diabetic, anti-inflammatory, and anti-aging activities”, Saudi Journal of Biological Sciences, 30(1): 103485, (2023).
  • [81] Song, F. X., Xu, X., Ding, H., Yu, L., Huang, H., Hao, J., Wu, C., Liang, R., and Zhang, S., “Recent Progress in nanomaterial-based biosensors and theranostic nanomedicine for bladder cancer”, Biosensors, 13(1): 1–39, (2023).
  • [82] Lobatto, M. E., Fuster, V., Fayad, Z. A., and Mulder, W. J. M., “Perspectives and opportunities for nanomedicine in the management of atherosclerosis”, Nature Reviews, 10: 835, (2011).
  • [83] Zhao, P., Li, B., Li, Y., Chen, L., Wang, H., and Ye, L., “DNA-templated ultrasmall bismuth sulfide nanoparticles for photoacoustic imaging of myocardial infarction”, Journal of Colloid and Interface Science, 615: 475–484, (2022).
  • [84] Li, P., Wang, D., Hu, J., and Yang, X., “The role of imaging in targeted delivery of nanomedicine for cancer therapy”, Advanced Drug Delivery Reviews, 189: 114447, (2022).
  • [85] Wangaryattawanich, P., Rutman, A. M., Petcharunpaisan, S., and Mossa-Basha, M., “Incidental findings on brain magnetic resonance imaging (MRI) in adults: a review of imaging spectrum, clinical significance, and management”, British Journal of Radiology, 96(1142): 1–13, (2023).
  • [86] Quader, S., Kataoka, K., and Cabral, H., “Nanomedicine for brain cancer”, Advanced Drug Delivery Reviews, 182: 114115, (2022).
  • [87] Mukhtar, M., Bilal, M., Rahdar, A., Barani, M., Arshad, R., Behl, T., Brisc, C., and Banica, F., Bungau, S., “Nanomaterials for diagnosis and treatment of brain cancer: recent updates”, Chemosensors, 8(4): 1–31, (2020).
  • [88] Liao, C., Wu, Z., Lin, C., Chen, X., Zou, Y., Zhao, W., Li, X., Huang, G., Xu, B., Briganti, G. E., Qi, Y., Wang, X., Zeng, T., Wuethrich, A., and Zou, H., “Nurturing the marriages of urinary liquid biopsies and nano‐diagnostics for precision urinalysis of prostate cancer”, Smart Medicine, 2(1): e20220020, (2023).
  • [89] Gomez-Marquez, J., and Hamad-Schifferli, K., “Local development of nanotechnology-based diagnostics”, Nature Nanotechnology, 16: 484–486, (2021).
  • [90] Khademi, R., Mohammadi, Z., Khademi, R., Saghazadeh, A., and Rezaei, N., “Nanotechnology-based diagnostics and therapeutics in acute lymphoblastic leukemia: a systematic review of preclinical studies”, Nanoscale Advances, 5: 571–595, (2023).
  • [91] Zhao, X., Xu, S., Jiang, Y., Wang, C., ur Rehman, S., Ji, S., Wang, J., Tao, T., Xu, H., Chen, R., Cai, Y., Jiang, Y., Wang, H., Ma, K., and Wang, J., “BSA-magnetite nanotorpedo for safe and efficient delivery of chemotherapy drugs”, Chemical Engineering Journal, 454(3): 140440, (2023).
  • [92] Wu, R., Wang, K., Gai, Y., Li, M., Wang, J., Wang, C., Zhang, Y., Xiao, Z., Jiang, D., Gao, Z., and Xia, X., “Nanomedicine for renal cell carcinoma: imaging, treatment and beyond”, Journal of Nanobiotechnology, 21: 1–24, (2023).
  • [93] Chedea, V. S., Palade, L. M., Pelmus, R. S., Dragomir, C., and Taranu, I., “Red grape pomace rich in polyphenols diet increases the antioxidant status in key organs— kidneys, liver, and spleen of piglets”, Animals, 9(4): 149, (2019).
  • [94] Wang, Z., Liu, A., Li, X., Guan, L., Xing, H., He, L., Fang, L., Zvyagin, A. V., Yang, X., Yang, B., and Lin, Q., “Multifunctional nanoprobe for multi-mode imaging and diagnosis of metastatic prostate cancer”, Talanta, 256: 124255, (2023).
  • [95] Çifci, S. A., Yalçın, N., Aksu, T., and Demirkan, K., “Liposomal amphotericin B related late-onset hyperphosphatemia in a pediatric patient with acute myeloid leukemia”, Journal of Oncology Pharmacy Practice, 28(6): 1478–1482, (2022).
  • [96] Dellapasqua, S., Aliaga, P. T., Munzone, E., Bagnardi, V., Pagan, E., Montagna, E., Cancello, G., Ghisini, R., Sangalli, C., Negri, M., Mazza, M., Iorfida, M., Cardillo, A., Sciandivasci, A., Bianco, N., De Maio, A. P., Milano, M., Campennì, G. M., Sansonno, L., Viale, G., Morra, A., Leonardi, M. C., Galimberti, V., Veronesi, P., and Colleoni, M., “Pegylated liposomal doxorubicin (Caelyx®) as adjuvant treatment in early-stage luminal b-like breast cancer: a feasibility phase II trial”, Current Oncology, 28(6): 5167–5178, (2021).
  • [97] Mukai, H., Ogawa, K., Kato, N., and Kawakami, S., “Recent advances in lipid nanoparticles for delivery of nucleic acid, mRNA, and gene editing-based therapeutics”, Drug Metabolism and Pharmacokinetics, 44: 100450, (2022).
  • [98] Han, Y., Pan, J., Ma, Y., Zhou, D., and Xu, W., “Protein-based biomaterials for combating viral infections: Current status and future prospects for development”, Biosafety and Health, 4: 87–94, (2022).
  • [99] Peng, C., Kuang, L., Zhao, J., Ross, A. E., Wang, Z., and Ciolino, J. B., “Bibliometric and visualized analysis of ocular drug delivery from 2001 to 2020”, Journal of Controlled Release, 345: 625–645, (2022).
  • [100] Vittala Murthy, N. T., Paul, S. K., Chauhan, H, and Singh, S., “Polymeric nanoparticles for transdermal delivery of polyphenols”, Current Drug Delivery, 19(2): 182–191, (2022).
  • [101] Uddin, S., Rafiqul Islam, M., Md Moshikur, R., Wakabayashi, R., Kamiya, N., Moniruzzaman, M., and Goto, M., “Transdermal delivery of antigenic protein using ionic liquid-based nanocarriers for tumor immunotherapy”, ACS Applied Bio Materials, 5: 2586–2597, (2022).
  • [102] Yaqoob, S. B., Adnan, R., Rameez Khan, R. M., and Rashid, M., “Gold, silver, and palladium nanoparticles: A chemical tool for biomedical applications”, Frontiers in Chemistry, 8: 376, (2020).
There are 102 citations in total.

Details

Primary Language English
Subjects Nanochemistry
Journal Section Chemical Engineering
Authors

Mohammad Ruhul Amin Bhuiyan 0000-0001-7335-4158

Hayati Mamur 0000-0001-7555-5826

Mehmet Ali Üstüner 0000-0003-1846-8974

Haluk Korucu 0000-0001-6763-3249

Early Pub Date June 12, 2024
Publication Date December 1, 2024
Published in Issue Year 2024

Cite

APA Bhuiyan, M. R. A., Mamur, H., Üstüner, M. A., Korucu, H. (2024). Emerging Opportunities and Challenges of Nanoparticles in Nanomedicine. Gazi University Journal of Science, 37(4), 1633-1652. https://doi.org/10.35378/gujs.1325750
AMA Bhuiyan MRA, Mamur H, Üstüner MA, Korucu H. Emerging Opportunities and Challenges of Nanoparticles in Nanomedicine. Gazi University Journal of Science. December 2024;37(4):1633-1652. doi:10.35378/gujs.1325750
Chicago Bhuiyan, Mohammad Ruhul Amin, Hayati Mamur, Mehmet Ali Üstüner, and Haluk Korucu. “Emerging Opportunities and Challenges of Nanoparticles in Nanomedicine”. Gazi University Journal of Science 37, no. 4 (December 2024): 1633-52. https://doi.org/10.35378/gujs.1325750.
EndNote Bhuiyan MRA, Mamur H, Üstüner MA, Korucu H (December 1, 2024) Emerging Opportunities and Challenges of Nanoparticles in Nanomedicine. Gazi University Journal of Science 37 4 1633–1652.
IEEE M. R. A. Bhuiyan, H. Mamur, M. A. Üstüner, and H. Korucu, “Emerging Opportunities and Challenges of Nanoparticles in Nanomedicine”, Gazi University Journal of Science, vol. 37, no. 4, pp. 1633–1652, 2024, doi: 10.35378/gujs.1325750.
ISNAD Bhuiyan, Mohammad Ruhul Amin et al. “Emerging Opportunities and Challenges of Nanoparticles in Nanomedicine”. Gazi University Journal of Science 37/4 (December 2024), 1633-1652. https://doi.org/10.35378/gujs.1325750.
JAMA Bhuiyan MRA, Mamur H, Üstüner MA, Korucu H. Emerging Opportunities and Challenges of Nanoparticles in Nanomedicine. Gazi University Journal of Science. 2024;37:1633–1652.
MLA Bhuiyan, Mohammad Ruhul Amin et al. “Emerging Opportunities and Challenges of Nanoparticles in Nanomedicine”. Gazi University Journal of Science, vol. 37, no. 4, 2024, pp. 1633-52, doi:10.35378/gujs.1325750.
Vancouver Bhuiyan MRA, Mamur H, Üstüner MA, Korucu H. Emerging Opportunities and Challenges of Nanoparticles in Nanomedicine. Gazi University Journal of Science. 2024;37(4):1633-52.