Research Article
BibTex RIS Cite

A DFT/TD-DFT Study on Pyridine-Anchored Schiff Base Molecules for DSSC Applications

Year 2024, , 1480 - 1496, 01.09.2024
https://doi.org/10.35378/gujs.1365988

Abstract

The primary objective of this research is to examine the Schiff bases produced from pyridine-anchored molecules, with a specific focus on their potential utilization in dye-sensitized solar cells (DSSCs). The electrical, spectroscopic, and photovoltaic properties of dyes incorporating a pyridine anchor were calculated utilizing DFT and TD-DFT methodologies. The geometries, electronic characteristics, and photovoltaic properties of the dyes under investigation were evaluated using DFT-B3LYP/6-311++G(d,p) quantum chemical simulations. The excitation energies and UV-Vis spectra of the dyes have been computed utilizing the TD-DFT-B3LYP/6-311++G(d,p) methodology and the conductor-like polarizable continuum model (C-PCM). The electron injection and dye regeneration processes are contingent upon the energy levels of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of these dyes. The investigation focused mainly on four fundamental components exhibiting robust interconnections and equivalent significance: light-harvesting efficiency (LHE), electron injection free energy (ΔGinject), and reorganization energy. The determined HOMO energy levels are observed to be lower than the redox potential, indicating that the suggested dyes possess the capability to acquire electrons from redox and successfully undergo dye regeneration. Furthermore, the LUMO of the dyes exhibits a more significant negative energy level in comparison to the conduction band of TiO2. Thus, it demonstrates that the transfer of electric charge from the LUMO level to TiO2 is thermodynamically favorable. The more considerable negative ΔGinject value obtained by calculation suggests that Dye-1 may have a higher ability to inject charge.

Supporting Institution

No specific grant for this research was given by funding organizations in the public, private, or nonprofit sectors.

Thanks

The author expresses gratitude to anonymous reviewers for their insightful comments.

References

  • [1] Zheng, L., Cao, Q., Wang, J., Chai, Z., Cai, G., Ma, Z., Han, H., Li, Q., Li, Z., Chen, H., “Novel D–A−π–A-Type Organic Dyes Containing a Ladderlike Dithienocyclopentacarbazole Donor for Effective Dye-Sensitized Solar Cells”, ACS Omega, 2(10): 7048–7056, (2017). https://doi.org/10.1021/acsomega.7b01387
  • [2] Ren, Y., Zhang, D., Suo, J., Cao, Y., Eickemeyer, F. T., Vlachopoulos, N., Zakeeruddin, S. M., Hagfeldt, A., Grätzel, M., “Hydroxamic acid pre-adsorption raises the efficiency of cosensitized solar cells”, Nature, 613(7942): 60–65, (2022). https://doi.org/10.1038/s41586-022-05460-z
  • [3] O’Regan, B., Grätzel, M., “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature, 353 (6346): 737–740, (1991). https://doi.org/10.1038/353737a0
  • [4] Xie, Y., Tang, Y., Wu, W., Wang, Y., Liu, J., Li, X., Tian, H.,Zhu, W. H., “Porphyrin Cosensitization for a Photovoltaic Efficiency of 11.5%: A Record for Non-Ruthenium Solar Cells Based on Iodine Electrolyte”, Journal of the American Chemical Society, 137(44): 14055–14058, (2015). https://doi.org/10.1021/jacs.5b09665
  • [5] Higashino, T., Imahori, H., “Porphyrins as excellent dyes for dye-sensitized solar cells: recent developments and insights”, Dalton Transactions, 44(2): 448–463, (2015). https://doi.org/10.1039/c4dt02756f
  • [6] Zhang, S., Yang, X., Numata, Y., Han, L., “Highly efficient dye-sensitized solar cells: progress and future challenges”, Energy Environmental Science, 6(5): 1443, (2013). https://doi.org/10.1039/c3ee24453a
  • [7] Luo, J., Xu, M., Li, R., Huang, K. W., Jiang, C., Qi, Q., Zeng, W., Zhang, J., Chi, C., Wang, P., Wu, J., “N-Annulated Perylene as An Efficient Electron Donor for Porphyrin-Based Dyes: Enhanced Light-Harvesting Ability and High-Efficiency Co(II/III)-Based Dye-Sensitized Solar Cells”, Journal of the American Chemical Society, 136(1): 265–272, (2013). https://doi.org/10.1021/ja409291g
  • [8] Zhou, G., Pschirer, N., Schöneboom, J. C., Eickemeyer, F., Baumgarten, M., Müllen, K., “Ladder-Type Pentaphenylene Dyes for Dye-Sensitized Solar Cells”, Chemistry of Materials, 20(5): 1808–1815, (2008). https://doi.org/10.1021/cm703459p
  • [9] Erdogdu, M., Atilgan, A., Erdogdu, Y., Yildiz, A. “Flavonoid from Hedera helix fruits: A promising new natural sensitizer for DSSCs.”, Journal of Photochemistry and Photobiology A: Chemistry, 448, 115288, (2024). https://doi.org/10.1016/j.jphotochem.2023.115288
  • [10] Erdoğdu, M., Atilgan, A., Erdogdu, Y., Yildiz, A., “Natural dyes extracted from Ligustrum vulgare, Juniperus sabina, and Papaver rhoeas for novel DSSC applications”, Materials Letters, 358: 135811 (2024). https://doi.org/10.1016/j.matlet.2023.135811
  • [11] Akdogan, N., Alp, M., Atilgan, A., Disli, A., Erdogdu, Y., Yildiz, A., “An AZO dye with nitril anchoring to dye-sensitized solar cell performance: A theoretical and experimental investigation”, Materials Letters, 351: 135075, (2023). https://doi.org/10.1016/j.matlet.2023.135075
  • [12] Akdogan, N., Ortatepe, B., Atli, A., Disli, A., Erdogdu, Y., Yildiz, A., “A Joint Theoretical and Experimental Study on a Tetrazole‐Anchored BODIPY‐Based Dye at the Surface of TiO2 for Dye‐Sensitized Solar Cell Applications”, Physica Status Solidi (a), 2300513, (2023). https://doi.org/10.1002/pssa.202300513
  • [13] Nazeeruddin, M. K., Péchy, P., Renouard, T., Zakeeruddin, S. M., Humphry-Baker, R., Comte, P., Liska, P., Cevey, L., Costa, E., Shklover, V., Spiccia, L., Deacon, G. B., Bignozzi, C. A., Grätzel, M., “Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells”, Journal of the American Chemical Society, 123(8): 1613–1624, (2001). https://doi.org/10.1021/ja003299u
  • [14] Liang, M., Chen, J., “Arylamine organic dyes for dye-sensitized solar cells”, Chemical Society Reviews, 42(8): 3453, (2013). https://doi.org/10.1039/c3cs35372a
  • [15] Katoh, R., Furube, A., Yoshihara, T., Hara, K., Fujihashi, G., Takano, S., Murata, S., Arakawa, H., Tachiya, M., “Efficiencies of Electron Injection from Excited N3 Dye into Nanocrystalline Semiconductor (ZrO2, TiO2, ZnO, Nb2O5, SnO2, In2O3) Films”, The Journal of Physical Chemistry B, 108(15): 4818–4822, (2004). https://doi.org/10.1021/jp031260g
  • [16] Nicksonsebastin, D., Pounraj, P., Prasath, M., “Donor functionalized perylene and different π-spacer based sensitizers for dye-sensitized solar cell applications - a theoretical approach”, Journal of Molecular Modeling, 28(4): (2022). https://doi.org/10.1007/s00894-022-05087-x
  • [17] Ooyama, Y., Inoue, S., Asada, R., Ito, G., Kushimoto, K., Komaguchi, K., Imae, I.,Harima, Y., “Dye‐Sensitized Solar Cells Based on a Novel Fluorescent Dye with a Pyridine Ring and a Pyridinium Dye with the Pyridinium Ring Forming Strong Interactions with Nanocrystalline TiO2 Films”, European Journal of Organic Chemistry, 1: 92–100. (2009), https://doi.org/10.1002/ejoc.200900983
  • [18] Koumura, N., Wang, Z. S., Mori, S., Miyashita, M., Suzuki, E.,Hara, K., “Alkyl-Functionalized Organic Dyes for Efficient Molecular Photovoltaics”, Journal of the American Chemical Society, 128(44): 14256–14257,(2006). https://doi.org/10.1021/ja0645640
  • [19] Lee, M. J., Seo, K. D., Song, H. M., Kang, M. S., Eom, Y. K., Kang, H. S.,Kim, H. K., “Novel D-π-A system based on zinc-porphyrin derivatives for highly efficient dye-sensitised solar cells”, Tetrahedron Letters, 52(30): 3879–3882, (2011). https://doi.org/10.1016/j.tetlet.2011.05.074
  • [20] Wang, Z., Cui, Y., Hara, K., Dan‐oh, Y., Kasada, C.,Shinpo, A., “A High‐Light‐Harvesting‐Efficiency Coumarin Dye for Stable Dye‐Sensitized Solar Cells”, Advanced Materials, 19(8) : 1138–1141,(2007). https://doi.org/10.1002/adma.200601020
  • [21] Zeng, W., Cao, Y., Bai, Y., Wang, Y., Shi, Y., Zhang, M., Wang, F., Pan, C.,Wang, P., “Efficient Dye-Sensitized Solar Cells with an Organic Photosensitizer Featuring Orderly Conjugated Ethylenedioxythiophene and Dithienosilole Blocks”, Chemistry of Materials, 22(5): 1915–1925, (2010). https://doi.org/10.1021/cm9036988
  • [22] Ayaz, M., Gündoğdu, Aytaç, S., Erdem, B., Çiftçi, H., Erdogdu, Y., “Microwave-assisted synthesis, characterizations, antimicrobial activities, and DFT studies on some pyridine derived Schiff bases”, Journal of Molecular Structure, 1269: 133791, (2022). https://doi.org/10.1016/j.molstruc.2022.133791
  • [23] Frisch, M.J., et.al. Gaussian 09. Revision C.01; Gaussian, Inc.: Wallingford CT, 2009
  • [24] Becke, A. D., “Density-functional exchange-energy approximation with correct asymptotic behavior”, Physical Review A, 38(6): 3098–3100, (1988). https://doi.org/10.1103/physreva.38.3098
  • [25] Becke, A. D., “Density-functional thermochemistry. III. The role of exact exchange”, The Journal of Chemical Physics, 98(7): 5648–5652, (1993). https://doi.org/10.1063/1.464913
  • [26] Lee, C., Yang, W.,Parr, R. G., “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density”, Physical Review B, 37(2): 785–789, (1988). https://doi.org/10.1103/physrevb.37.785
  • [27] Casanova, D., Rotzinger, F. P.,Grätzel, M., “Computational Study of Promising Organic Dyes for High-Performance Sensitized Solar Cells”, Journal of Chemical Theory and Computation, 6(4): 1219–1227, (2010). https://doi.org/10.1021/ct100069q
  • [28] Meng, S., Kaxiras, E., Nazeeruddin, M. K., Grätzel, M., “Design of Dye Acceptors for Photovoltaics from First-Principles Calculations”, The Journal of Physical Chemistry C, 115(18): 9276–9282, (2011). https://doi.org/10.1021/jp201646q
  • [29] Arunkumar, A., Shanavas, S., Anbarasan, P. M., “First-principles study of efficient phenothiazine-based D–π–A organic sensitizers with various spacers for DSSCs”, Journal of Computational Electronics, 17(4): 1410–1420, (2018). https://doi.org/10.1007/s10825-018-1226-5
  • [30] Yanai, T., Tew, D. P., Handy, N. C., “A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP)”, Chemical Physics Letters, 393(1–3): 51–57, (2004). https://doi.org/10.1016/j.cplett.2004.06.011
  • [31] Zhao, Y., Truhlar, D. G., “The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals”, Theoretical Chemistry Accounts, 120(1–3): 215–241, (2007). https://doi.org/10.1007/s00214-007-0310-x28
  • [32] Chai, J. D., Head-Gordon, M., “Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections”, Physical Chemistry Chemical Physics, 10(44): 6615, (2008). https://doi.org/10.1039/b810189b
  • [33] Marinado, T., Nonomura, K., Nissfolk, J., Karlsson, M. K., Hagberg, D. P., Sun, L., Mori, S.,Hagfeldt, A.,“How the Nature of Triphenylamine-Polyene Dyes in Dye-Sensitized Solar Cells Affects the Open-Circuit Voltage and Electron Lifetimes”, Langmuir, 26(4): 2592 – 2598, (2009). https://doi.org/10.1021/la902897z
  • [34] Pearson, R. G., “Absolute electronegativity and hardness: application to inorganic chemistry”, Inorganic Chemistry, 27(4): 734–740, (1988), https://doi.org/10.1021/ic00277a030
  • [35] Nalwa, H. S., “Handbook of Advanced Electronic and Photonic Materials and Devices: Semiconductor devices”, (2001).
  • [36] Erdogdu Y., Erkoc S., “Structural and Electronic Properties of Ti Doped Aluminum Clusters: Density Functional Theory Calculations”, Journal of Computational and Theoretical Nanoscience. 9(6): 837-850, (2012), https://doi.org/10.1166/jctn.2012.2105.
  • [37] Domingo, L., Ríos-Gutiérrez, M., Pérez, P., “Applications of the Conceptual Density Functional Theory Indices to Organic Chemistry Reactivity”, Molecules, 21(6): 748, (2016). https://doi.org/10.3390/molecules21060748
  • [38] Gázquez, J. L., Cedillo, A.,Vela, A., “Electrodonating and Electroaccepting Powers”, The Journal of Physical Chemistry A, 111(10): 1966–1970,( 2007), https://doi.org/10.1021/jp065459f.
  • [39] Berlin, Y. A., Hutchison, G. R., Rempala, P., Ratner, M. A., Michl, J., “Charge Hopping in Molecular Wires as a Sequence of Electron-Transfer Reactions”, The Journal of Physical Chemistry A, 107(19): 3970–3980, (2003). https://doi.org/10.1021/jp034225i
  • [40] Foster, M. E., Wong, B. M., “Nonempirically tuned range-separated DFT accurately predicts both fundamental and excitation gaps in DNA and RNA nucleobases”, Journal of chemical theory and computation, 8(8): 2682-2687, (2012). https://doi.org/10.1021/ct300420f
  • [41] El Mouhi, R., Daoui, O., Fitri, A., Benjelloun, A. T., El Khattabi, S., Benzakour, M., Kurban, M. “A strategy to enhance V OC of π-conjugated molecules based on thieno [2, 3-b] indole for applications in bulk heterojunction organic solar cells using DFT, TD-DFT, and 3D-QSPR modeling studies”, New Journal of Chemistry, 47(2): 812-827, (2023). https://doi.org/10.1039/D2NJ04281A
  • [42] Gündüz, B., Kurban, M., “Photonic, spectroscopic properties and electronic structure of PTCDI-C8 organic nanostructure”, Vibrational Spectroscopy, 96, 46-51, (2018). https://doi.org/10.1016/j.vibspec.2018.02.008
  • [43] Kurban, M., Gündüz, B., Göktaş, F., “Experimental and theoretical studies of the structural, electronic and optical properties of BCzVB organic material”, Optik, 182, 611-617, (2019), https://doi.org/10.1016/j.ijleo.2019.01.080
  • [44] Lu, T.,Chen, F., “Multiwfn: A multifunctional wavefunction analyzer”, Journal of Computational Chemistry, 33(5): 580–592, (2011). https://doi.org/10.1002/jcc.22885
  • [45] Boschloo, G., Hagfeldt, A., “ChemInform Abstract: Characteristics of the Iodide/Triiodide Redox Mediator in Dye-Sensitized Solar Cells”, ChemInform, 41(17): (2010), https://doi.org/10.1002/chin.201017268
  • [46] Wenger, S., Bouit, P. A., Chen, Q., Teuscher, J., Censo, D. D., Humphry-Baker, R., Moser, J. E., Delgado, J. L., Martín, N., Zakeeruddin, S. M., Grätzel, M., “Efficient Electron Transfer and Sensitizer Regeneration in Stable π-Extended Tetrathiafulvalene-Sensitized Solar Cells”, Journal of the American Chemical Society, 132(14): 5164–5169, (2010). https://doi.org/10.1021/ja909291h
  • [47] Razavi, R., Kaya, S., Zahedifar, M.,Ahmadi, S. A., “Simulation and surface topology of activity of pyrazoloquinoline derivatives as corrosion inhibitor on the copper surfaces”, Scientific Reports, 11(1): (2021). https://doi.org/10.1038/s41598-021-91159-6
  • [48] Li, S., He, J., Jiang, H., Mei, S., Hu, Z., Kong, X., Yang, M., Wu, Y., Zhang, S., and Tan, H., “Comparative Studies on the Structure–Performance Relationships of Phenothiazine-Based Organic Dyes for Dye-Sensitized Solar Cells”, ACS Omega, 6(10): 6817–6823, (2021). https://doi.org/10.1021/acsomega.0c05887
Year 2024, , 1480 - 1496, 01.09.2024
https://doi.org/10.35378/gujs.1365988

Abstract

References

  • [1] Zheng, L., Cao, Q., Wang, J., Chai, Z., Cai, G., Ma, Z., Han, H., Li, Q., Li, Z., Chen, H., “Novel D–A−π–A-Type Organic Dyes Containing a Ladderlike Dithienocyclopentacarbazole Donor for Effective Dye-Sensitized Solar Cells”, ACS Omega, 2(10): 7048–7056, (2017). https://doi.org/10.1021/acsomega.7b01387
  • [2] Ren, Y., Zhang, D., Suo, J., Cao, Y., Eickemeyer, F. T., Vlachopoulos, N., Zakeeruddin, S. M., Hagfeldt, A., Grätzel, M., “Hydroxamic acid pre-adsorption raises the efficiency of cosensitized solar cells”, Nature, 613(7942): 60–65, (2022). https://doi.org/10.1038/s41586-022-05460-z
  • [3] O’Regan, B., Grätzel, M., “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature, 353 (6346): 737–740, (1991). https://doi.org/10.1038/353737a0
  • [4] Xie, Y., Tang, Y., Wu, W., Wang, Y., Liu, J., Li, X., Tian, H.,Zhu, W. H., “Porphyrin Cosensitization for a Photovoltaic Efficiency of 11.5%: A Record for Non-Ruthenium Solar Cells Based on Iodine Electrolyte”, Journal of the American Chemical Society, 137(44): 14055–14058, (2015). https://doi.org/10.1021/jacs.5b09665
  • [5] Higashino, T., Imahori, H., “Porphyrins as excellent dyes for dye-sensitized solar cells: recent developments and insights”, Dalton Transactions, 44(2): 448–463, (2015). https://doi.org/10.1039/c4dt02756f
  • [6] Zhang, S., Yang, X., Numata, Y., Han, L., “Highly efficient dye-sensitized solar cells: progress and future challenges”, Energy Environmental Science, 6(5): 1443, (2013). https://doi.org/10.1039/c3ee24453a
  • [7] Luo, J., Xu, M., Li, R., Huang, K. W., Jiang, C., Qi, Q., Zeng, W., Zhang, J., Chi, C., Wang, P., Wu, J., “N-Annulated Perylene as An Efficient Electron Donor for Porphyrin-Based Dyes: Enhanced Light-Harvesting Ability and High-Efficiency Co(II/III)-Based Dye-Sensitized Solar Cells”, Journal of the American Chemical Society, 136(1): 265–272, (2013). https://doi.org/10.1021/ja409291g
  • [8] Zhou, G., Pschirer, N., Schöneboom, J. C., Eickemeyer, F., Baumgarten, M., Müllen, K., “Ladder-Type Pentaphenylene Dyes for Dye-Sensitized Solar Cells”, Chemistry of Materials, 20(5): 1808–1815, (2008). https://doi.org/10.1021/cm703459p
  • [9] Erdogdu, M., Atilgan, A., Erdogdu, Y., Yildiz, A. “Flavonoid from Hedera helix fruits: A promising new natural sensitizer for DSSCs.”, Journal of Photochemistry and Photobiology A: Chemistry, 448, 115288, (2024). https://doi.org/10.1016/j.jphotochem.2023.115288
  • [10] Erdoğdu, M., Atilgan, A., Erdogdu, Y., Yildiz, A., “Natural dyes extracted from Ligustrum vulgare, Juniperus sabina, and Papaver rhoeas for novel DSSC applications”, Materials Letters, 358: 135811 (2024). https://doi.org/10.1016/j.matlet.2023.135811
  • [11] Akdogan, N., Alp, M., Atilgan, A., Disli, A., Erdogdu, Y., Yildiz, A., “An AZO dye with nitril anchoring to dye-sensitized solar cell performance: A theoretical and experimental investigation”, Materials Letters, 351: 135075, (2023). https://doi.org/10.1016/j.matlet.2023.135075
  • [12] Akdogan, N., Ortatepe, B., Atli, A., Disli, A., Erdogdu, Y., Yildiz, A., “A Joint Theoretical and Experimental Study on a Tetrazole‐Anchored BODIPY‐Based Dye at the Surface of TiO2 for Dye‐Sensitized Solar Cell Applications”, Physica Status Solidi (a), 2300513, (2023). https://doi.org/10.1002/pssa.202300513
  • [13] Nazeeruddin, M. K., Péchy, P., Renouard, T., Zakeeruddin, S. M., Humphry-Baker, R., Comte, P., Liska, P., Cevey, L., Costa, E., Shklover, V., Spiccia, L., Deacon, G. B., Bignozzi, C. A., Grätzel, M., “Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells”, Journal of the American Chemical Society, 123(8): 1613–1624, (2001). https://doi.org/10.1021/ja003299u
  • [14] Liang, M., Chen, J., “Arylamine organic dyes for dye-sensitized solar cells”, Chemical Society Reviews, 42(8): 3453, (2013). https://doi.org/10.1039/c3cs35372a
  • [15] Katoh, R., Furube, A., Yoshihara, T., Hara, K., Fujihashi, G., Takano, S., Murata, S., Arakawa, H., Tachiya, M., “Efficiencies of Electron Injection from Excited N3 Dye into Nanocrystalline Semiconductor (ZrO2, TiO2, ZnO, Nb2O5, SnO2, In2O3) Films”, The Journal of Physical Chemistry B, 108(15): 4818–4822, (2004). https://doi.org/10.1021/jp031260g
  • [16] Nicksonsebastin, D., Pounraj, P., Prasath, M., “Donor functionalized perylene and different π-spacer based sensitizers for dye-sensitized solar cell applications - a theoretical approach”, Journal of Molecular Modeling, 28(4): (2022). https://doi.org/10.1007/s00894-022-05087-x
  • [17] Ooyama, Y., Inoue, S., Asada, R., Ito, G., Kushimoto, K., Komaguchi, K., Imae, I.,Harima, Y., “Dye‐Sensitized Solar Cells Based on a Novel Fluorescent Dye with a Pyridine Ring and a Pyridinium Dye with the Pyridinium Ring Forming Strong Interactions with Nanocrystalline TiO2 Films”, European Journal of Organic Chemistry, 1: 92–100. (2009), https://doi.org/10.1002/ejoc.200900983
  • [18] Koumura, N., Wang, Z. S., Mori, S., Miyashita, M., Suzuki, E.,Hara, K., “Alkyl-Functionalized Organic Dyes for Efficient Molecular Photovoltaics”, Journal of the American Chemical Society, 128(44): 14256–14257,(2006). https://doi.org/10.1021/ja0645640
  • [19] Lee, M. J., Seo, K. D., Song, H. M., Kang, M. S., Eom, Y. K., Kang, H. S.,Kim, H. K., “Novel D-π-A system based on zinc-porphyrin derivatives for highly efficient dye-sensitised solar cells”, Tetrahedron Letters, 52(30): 3879–3882, (2011). https://doi.org/10.1016/j.tetlet.2011.05.074
  • [20] Wang, Z., Cui, Y., Hara, K., Dan‐oh, Y., Kasada, C.,Shinpo, A., “A High‐Light‐Harvesting‐Efficiency Coumarin Dye for Stable Dye‐Sensitized Solar Cells”, Advanced Materials, 19(8) : 1138–1141,(2007). https://doi.org/10.1002/adma.200601020
  • [21] Zeng, W., Cao, Y., Bai, Y., Wang, Y., Shi, Y., Zhang, M., Wang, F., Pan, C.,Wang, P., “Efficient Dye-Sensitized Solar Cells with an Organic Photosensitizer Featuring Orderly Conjugated Ethylenedioxythiophene and Dithienosilole Blocks”, Chemistry of Materials, 22(5): 1915–1925, (2010). https://doi.org/10.1021/cm9036988
  • [22] Ayaz, M., Gündoğdu, Aytaç, S., Erdem, B., Çiftçi, H., Erdogdu, Y., “Microwave-assisted synthesis, characterizations, antimicrobial activities, and DFT studies on some pyridine derived Schiff bases”, Journal of Molecular Structure, 1269: 133791, (2022). https://doi.org/10.1016/j.molstruc.2022.133791
  • [23] Frisch, M.J., et.al. Gaussian 09. Revision C.01; Gaussian, Inc.: Wallingford CT, 2009
  • [24] Becke, A. D., “Density-functional exchange-energy approximation with correct asymptotic behavior”, Physical Review A, 38(6): 3098–3100, (1988). https://doi.org/10.1103/physreva.38.3098
  • [25] Becke, A. D., “Density-functional thermochemistry. III. The role of exact exchange”, The Journal of Chemical Physics, 98(7): 5648–5652, (1993). https://doi.org/10.1063/1.464913
  • [26] Lee, C., Yang, W.,Parr, R. G., “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density”, Physical Review B, 37(2): 785–789, (1988). https://doi.org/10.1103/physrevb.37.785
  • [27] Casanova, D., Rotzinger, F. P.,Grätzel, M., “Computational Study of Promising Organic Dyes for High-Performance Sensitized Solar Cells”, Journal of Chemical Theory and Computation, 6(4): 1219–1227, (2010). https://doi.org/10.1021/ct100069q
  • [28] Meng, S., Kaxiras, E., Nazeeruddin, M. K., Grätzel, M., “Design of Dye Acceptors for Photovoltaics from First-Principles Calculations”, The Journal of Physical Chemistry C, 115(18): 9276–9282, (2011). https://doi.org/10.1021/jp201646q
  • [29] Arunkumar, A., Shanavas, S., Anbarasan, P. M., “First-principles study of efficient phenothiazine-based D–π–A organic sensitizers with various spacers for DSSCs”, Journal of Computational Electronics, 17(4): 1410–1420, (2018). https://doi.org/10.1007/s10825-018-1226-5
  • [30] Yanai, T., Tew, D. P., Handy, N. C., “A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP)”, Chemical Physics Letters, 393(1–3): 51–57, (2004). https://doi.org/10.1016/j.cplett.2004.06.011
  • [31] Zhao, Y., Truhlar, D. G., “The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals”, Theoretical Chemistry Accounts, 120(1–3): 215–241, (2007). https://doi.org/10.1007/s00214-007-0310-x28
  • [32] Chai, J. D., Head-Gordon, M., “Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections”, Physical Chemistry Chemical Physics, 10(44): 6615, (2008). https://doi.org/10.1039/b810189b
  • [33] Marinado, T., Nonomura, K., Nissfolk, J., Karlsson, M. K., Hagberg, D. P., Sun, L., Mori, S.,Hagfeldt, A.,“How the Nature of Triphenylamine-Polyene Dyes in Dye-Sensitized Solar Cells Affects the Open-Circuit Voltage and Electron Lifetimes”, Langmuir, 26(4): 2592 – 2598, (2009). https://doi.org/10.1021/la902897z
  • [34] Pearson, R. G., “Absolute electronegativity and hardness: application to inorganic chemistry”, Inorganic Chemistry, 27(4): 734–740, (1988), https://doi.org/10.1021/ic00277a030
  • [35] Nalwa, H. S., “Handbook of Advanced Electronic and Photonic Materials and Devices: Semiconductor devices”, (2001).
  • [36] Erdogdu Y., Erkoc S., “Structural and Electronic Properties of Ti Doped Aluminum Clusters: Density Functional Theory Calculations”, Journal of Computational and Theoretical Nanoscience. 9(6): 837-850, (2012), https://doi.org/10.1166/jctn.2012.2105.
  • [37] Domingo, L., Ríos-Gutiérrez, M., Pérez, P., “Applications of the Conceptual Density Functional Theory Indices to Organic Chemistry Reactivity”, Molecules, 21(6): 748, (2016). https://doi.org/10.3390/molecules21060748
  • [38] Gázquez, J. L., Cedillo, A.,Vela, A., “Electrodonating and Electroaccepting Powers”, The Journal of Physical Chemistry A, 111(10): 1966–1970,( 2007), https://doi.org/10.1021/jp065459f.
  • [39] Berlin, Y. A., Hutchison, G. R., Rempala, P., Ratner, M. A., Michl, J., “Charge Hopping in Molecular Wires as a Sequence of Electron-Transfer Reactions”, The Journal of Physical Chemistry A, 107(19): 3970–3980, (2003). https://doi.org/10.1021/jp034225i
  • [40] Foster, M. E., Wong, B. M., “Nonempirically tuned range-separated DFT accurately predicts both fundamental and excitation gaps in DNA and RNA nucleobases”, Journal of chemical theory and computation, 8(8): 2682-2687, (2012). https://doi.org/10.1021/ct300420f
  • [41] El Mouhi, R., Daoui, O., Fitri, A., Benjelloun, A. T., El Khattabi, S., Benzakour, M., Kurban, M. “A strategy to enhance V OC of π-conjugated molecules based on thieno [2, 3-b] indole for applications in bulk heterojunction organic solar cells using DFT, TD-DFT, and 3D-QSPR modeling studies”, New Journal of Chemistry, 47(2): 812-827, (2023). https://doi.org/10.1039/D2NJ04281A
  • [42] Gündüz, B., Kurban, M., “Photonic, spectroscopic properties and electronic structure of PTCDI-C8 organic nanostructure”, Vibrational Spectroscopy, 96, 46-51, (2018). https://doi.org/10.1016/j.vibspec.2018.02.008
  • [43] Kurban, M., Gündüz, B., Göktaş, F., “Experimental and theoretical studies of the structural, electronic and optical properties of BCzVB organic material”, Optik, 182, 611-617, (2019), https://doi.org/10.1016/j.ijleo.2019.01.080
  • [44] Lu, T.,Chen, F., “Multiwfn: A multifunctional wavefunction analyzer”, Journal of Computational Chemistry, 33(5): 580–592, (2011). https://doi.org/10.1002/jcc.22885
  • [45] Boschloo, G., Hagfeldt, A., “ChemInform Abstract: Characteristics of the Iodide/Triiodide Redox Mediator in Dye-Sensitized Solar Cells”, ChemInform, 41(17): (2010), https://doi.org/10.1002/chin.201017268
  • [46] Wenger, S., Bouit, P. A., Chen, Q., Teuscher, J., Censo, D. D., Humphry-Baker, R., Moser, J. E., Delgado, J. L., Martín, N., Zakeeruddin, S. M., Grätzel, M., “Efficient Electron Transfer and Sensitizer Regeneration in Stable π-Extended Tetrathiafulvalene-Sensitized Solar Cells”, Journal of the American Chemical Society, 132(14): 5164–5169, (2010). https://doi.org/10.1021/ja909291h
  • [47] Razavi, R., Kaya, S., Zahedifar, M.,Ahmadi, S. A., “Simulation and surface topology of activity of pyrazoloquinoline derivatives as corrosion inhibitor on the copper surfaces”, Scientific Reports, 11(1): (2021). https://doi.org/10.1038/s41598-021-91159-6
  • [48] Li, S., He, J., Jiang, H., Mei, S., Hu, Z., Kong, X., Yang, M., Wu, Y., Zhang, S., and Tan, H., “Comparative Studies on the Structure–Performance Relationships of Phenothiazine-Based Organic Dyes for Dye-Sensitized Solar Cells”, ACS Omega, 6(10): 6817–6823, (2021). https://doi.org/10.1021/acsomega.0c05887
There are 48 citations in total.

Details

Primary Language English
Subjects Atomic and Molecular Physics
Journal Section Physics
Authors

Melike Ayaz 0000-0002-1169-8956

Yusuf Erdoğdu 0000-0001-7695-3834

Early Pub Date May 29, 2024
Publication Date September 1, 2024
Published in Issue Year 2024

Cite

APA Ayaz, M., & Erdoğdu, Y. (2024). A DFT/TD-DFT Study on Pyridine-Anchored Schiff Base Molecules for DSSC Applications. Gazi University Journal of Science, 37(3), 1480-1496. https://doi.org/10.35378/gujs.1365988
AMA Ayaz M, Erdoğdu Y. A DFT/TD-DFT Study on Pyridine-Anchored Schiff Base Molecules for DSSC Applications. Gazi University Journal of Science. September 2024;37(3):1480-1496. doi:10.35378/gujs.1365988
Chicago Ayaz, Melike, and Yusuf Erdoğdu. “A DFT/TD-DFT Study on Pyridine-Anchored Schiff Base Molecules for DSSC Applications”. Gazi University Journal of Science 37, no. 3 (September 2024): 1480-96. https://doi.org/10.35378/gujs.1365988.
EndNote Ayaz M, Erdoğdu Y (September 1, 2024) A DFT/TD-DFT Study on Pyridine-Anchored Schiff Base Molecules for DSSC Applications. Gazi University Journal of Science 37 3 1480–1496.
IEEE M. Ayaz and Y. Erdoğdu, “A DFT/TD-DFT Study on Pyridine-Anchored Schiff Base Molecules for DSSC Applications”, Gazi University Journal of Science, vol. 37, no. 3, pp. 1480–1496, 2024, doi: 10.35378/gujs.1365988.
ISNAD Ayaz, Melike - Erdoğdu, Yusuf. “A DFT/TD-DFT Study on Pyridine-Anchored Schiff Base Molecules for DSSC Applications”. Gazi University Journal of Science 37/3 (September 2024), 1480-1496. https://doi.org/10.35378/gujs.1365988.
JAMA Ayaz M, Erdoğdu Y. A DFT/TD-DFT Study on Pyridine-Anchored Schiff Base Molecules for DSSC Applications. Gazi University Journal of Science. 2024;37:1480–1496.
MLA Ayaz, Melike and Yusuf Erdoğdu. “A DFT/TD-DFT Study on Pyridine-Anchored Schiff Base Molecules for DSSC Applications”. Gazi University Journal of Science, vol. 37, no. 3, 2024, pp. 1480-96, doi:10.35378/gujs.1365988.
Vancouver Ayaz M, Erdoğdu Y. A DFT/TD-DFT Study on Pyridine-Anchored Schiff Base Molecules for DSSC Applications. Gazi University Journal of Science. 2024;37(3):1480-96.