Research Article
BibTex RIS Cite

Influence of Leg Geometry on the Performance of Bi2Te3 Thermoelectric Generators

Year 2024, , 1752 - 1768, 01.12.2024
https://doi.org/10.35378/gujs.1420942

Abstract

This study analyzed the significant performance using COMSOL Multiphysics software of thermoelectric modules (TEMs) fabricated from aluminium oxide (Al2O3), copper (Cu), and bismuth telluride (Bi2Te3) materials, with a particular focus on investigating various leg geometries. The TEM design had Al2O3 for insulation, Cu for conducting, and Bi2Te3 for TE legs among the Cu. Investigated the influence of square and rectangular TE legs with heights of 2.0, 2.75, and 3.5 mm on critical parameters such as the normalized current density, electric potential, temperature gradient, and total internal energy within the TEM. Furthermore, the impact of varying thicknesses in the insulator and conductor layers of the TEM was explored. The results consistently demonstrated that the square leg geometry, particularly when configured with a height of 2.75 mm, outperformed other leg geometries. Consequently, it is suggested to adopt a square-shaped Bi2Te3 TEM measuring 1 mm × 1 mm × 2.75 mm with a 0.50 mm Al2O3 thickness and 0.125 mm Cu thickness during the manufacturing process. Investigate how temperature differences in TE device leg design are influenced by parameters such as the Seebeck coefficient (S), thermal conductivity (k), and electrical conductivity (σ). At lower temperatures, modeling reveals lower electrical conductivity and enhanced thermal conductivity, highlighting the significance of S = ± 2.37×10⁻⁴ V/K. This illustrates the high potential of TEM for applications in thermoelectric generator (TEG) manufacturing.

Ethical Statement

not necessery

Supporting Institution

Manisa Celal Bayar University Scientific Research Coordination Unit

Project Number

2023-048

Thanks

The authors would like to thank the Department of Electrical and Electronic Engineering, Islamic University, Kushtia-7003, Bangladesh. This study was supported by Manisa Celal Bayar University Scientific Research Coordination Unit (Project no: 2023-048).

References

  • [1] Shastri, S. S., and Pandey, S. K., Thermoelectricity and Advanced Thermoelectric Materials, Woodhead Publishing, (2021).
  • [2] Cao, T., Shi, X. L., Li, M., Hu, B., Chen, W., Liu, W. D., Lyu, W., MacLeod, J., and Chen, Z. G., “Advances in bismuth-telluride-based thermoelectric devices: progress and challenges”, eScience, 3(3): 100122, (2023).
  • [3] Mamur, H., Bhuiyan, M. R. A., Korkmaz, F., and Nil, M., “A review on bismuth telluride (Bi2Te3) nanostructure for thermoelectric applications”, Renewable and Sustainable Energy Reviews, 82: 4159-4169, (2018).
  • [4] Mamur, H., and Bhuiyan, M. R. A., “Characterization of Bi2Te3 nanostructure by using a cost-effective chemical solution route”, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 39(3): 23-33, (2020).
  • [5] Bhuiyan, M. R. A., Mamur, H., and Dilmaç, Ö. F., “Review on performance evaluation of Bi2Te3-based and some other thermoelectric nanostructured materials”, Current Nanoscience, 17: 423-446, (2020).
  • [6] Mamur, H., Üstüner, M. A., Dilmaç, Ö. F., and Bhuiyan, M. R. A., “Performance evaluation of Bi2Te3-xSex (0.10≤ X ≤ 1.80) thermoelectric nanostructured materials”, Cleaner Chemical Engineering, 4: 100063, (2022).
  • [7] Mamur, H., Üstüner, M. A., Korucu, H., and Bhuiyan, M. R. A., “A review of the performance evaluation of thermoelectric nanostructure materials Bi2-xSbxTe3 (0.20≤ X ≤ 1.80)”, Cleaner Chemical Engineering, 6: 100101, (2023).
  • [8] Bhuiyan, M. R. A., Korucu, H., Mamur, H., and Haque, M. M., “Growth and characterization of Bi2Te2.70Se0.30 nanostructured materials by using a cost-effective chemical solution route”, Journal of Alloys and Metallurgical Systems, 4: 100032, (2023).
  • [9] Sanin-Villa, D., Montoya, O. D., and Grisales-Noreña, L. F., “Material property characterization and parameter estimation of thermoelectric generator by using a master–slave strategy based on metaheuristics techniques”, Mathematics, 11(6): 1326, (2023).
  • [10] Demir, M. E., and Dincer, I., “Performance assessment of a thermoelectric generator applied to exhaust waste heat recovery”, Applied Thermal Engineering, 120: 694-707, (2017).
  • [11] Chiba, T., Yabuki, H., and Takashiri, M., “High thermoelectric performance of flexible nanocomposite films based on Bi2Te3 nanoplates and carbon nanotubes selected using ultracentrifugation”, Scientific Reports, 13(1): 3010, (2023).
  • [12] Jaziri, N., Boughamoura, A., Müller, J., Mezghani, B., Tounsi, F., and Ismail, M., “A comprehensive review of thermoelectric generators: technologies and common applications”, Energy Reports, 6: 264-287, (2020).
  • [13] Soleimani, Z., Zoras, S., Ceranic, B., Cui, Y., and Shahzad, S., “A comprehensive review on the output voltage/power of wearable thermoelectric generators concerning their geometry and thermoelectric materials”, Nano Energy, 89: 106325, (2021).
  • [14] Aridi, R., Faraj, J., Ali, S., Lemenand, T., and Khaled, M., “Thermoelectric power generators: state-of-the-art, heat recovery method, and challenges”, Electricity, 2(3): 359-386 (2021).
  • [15] Li, W., Paul, M. C., Montecucco, A., Knox, A. R., Siviter, J., Sellami, N., Meng, X. L., Fernandez, E. F., Mallick, T. K., Mullen, P., Ashraf, A., Samarelli, A., Llin, L. F., Paul, D. J., Gregory, D. H., Gao, M., Sweet, T., Azough, F., Lowndes, R., and Freer, R., “Multiphysics simulations of a thermoelectric generator”, Energy Procedia, 75: 633-638, (2015).
  • [16] Li, W., Paul, M. C., Montecucco, A., Siviter, J., Knox, A. R., Sweet, T., Gao, M., Baig, H., Mallick, T. K., Han, G., Gregory, D. H., Azough, F., and Freer, R., “Multiphysics simulations of thermoelectric generator modules with cold and hot blocks and effects of some factors”, Case Studies in Thermal Engineering, 10: 63-72, (2017).
  • [17] Hasan, M. K., Üstüner, M. A., Mamur, H., and Bhuiyan, M. R. A., “Enhancing Bi2Te2.70Se0.30 thermoelectric module performance through COMSOL simulations”, Thermo, 4: 185-201, (2024).
  • [18] Şişik, B., and LeBlanc, S., “The influence of leg shape on thermoelectric performance under constant temperature and heat flux boundary conditions”, Frontiers in Materials, 7: 595955, (2020).
  • [19] Xu, H., Zhang, Q., Yi, L., Huang, S., Yang, H., Li, Y., Guo, Z., Hu, H., Sun, P., Tan, X., Liu, G. G., Song K., and Jiang, J., “High performance of Bi2Te3-based thermoelectric generator owing to pressure in fabrication process”, Applied Energy, 326: 119959, (2022).
  • [20] Wu, X., Wang, Z., Liu, Y., Sun, X., Xu, Y., Tian, Y., Wang, B., Sang, X., Shi, J., and Xiong, R., “Enhanced performance of Bi2Te3-based thermoelectric materials by incorporating Bi2Fe4O9 magnetic nanoparticles”, Journal of Alloys and Compounds, 904: 163933, (2022).
  • [21] Rogl, G., and Rogl, P., “Skutterudites, a most promising group of thermoelectric materials”, Current Opinion in Green and Sustainable Chemistry, 4: 50-57, (2017).
  • [22] Nan, B., Xu, G., Liu, W. M., Yang, Q., Zhang, B., Dong, Y., Tie, J., Guo, T., and Zhou, X., “High thermoelectric performance of PNP abrupt heterostructures by independent regulation of the electrical conductivity and Seebeck coefficient”, Materials Today Communications, 31: 103343, (2022).
  • [23] Jouhara, H., Żabnieńska-Góra, A., Khordehgah, N., Doraghi, Q., Ahmad, L., Norman, L., Axcell, B., Wrobel, L., and Dai, S., “Thermoelectric generator (TEG) technologies and applications”, International Journal of Thermofluids, 9: 100063, (2021).
  • [24] Luo, Y., Li, L., Chen, Y., and Kim, C. N., “Influence of geometric parameter and contact resistances on the thermal-electric behavior of a segmented TEG”, Energy, 254: 124487, (2022).
  • [25] Wilhelmy, S., Zimare, A., Lippmann, S., and Rettenmayr, M., “A temperature gradient evaluation method for determining temperature dependent thermal conductivities”, Measurement Science and Technology, 32(10): 105601, (2021).
  • [26] Hasan, M. K., Haque, M. M., Üstüner, M. A., Mamur, H., and Bhuiyan, M. R. A., “Optimizing the performance of Bi2Te3 TECs through numerical simulations using COMSOL multiphysics”, Journal of Alloys and Metallurgical Systems, 5: 100056, (2024).
  • [27] Liang, Z., Deng, L., Shi, X., Song, S., Xu, C., Chu, C. W., and Ren, Z., “Composition-dependent contact resistivity in an n-type Mg3SbxBi2− x thermoelectric single leg”, Materials Today Energy, 29: 101099, (2022).
  • [28] Khan, S., Cheema, T. A., Hassan, M., Malik, M. S., and Park, C. W., “Thermoelectric investigation of low-cost modular night-time electricity generation”, Heat and Mass Transfer, 58(8): 1381-1391, (2022).
  • [29] Aljaghtham, M., and Celik, E. “Design of cascade thermoelectric generation systems with improved thermal reliability”, Energy, 243: 123032, (2022).
  • [30] Shittu, S., Li, G., Zhao, X. and Ma, X., “Review of thermoelectric geometry and structure optimization for performance enhancement”, Applied Energy, 268: 115075, (2020).
  • [31] Basu, R., and Singh, A., “High temperature Si–Ge alloy towards thermoelectric applications: a comprehensive review”, Materials Today Physics, 21: 100468, (2021).
  • [32] Maduabuchi, C., Njoku, H., Eke, M., Mgbemene, C., Lamba, R., and Ibrahim, J. S., “Overall performance optimisation of tapered leg geometry based solar thermoelectric generators under isoflux conditions”, Journal of Power Sources, 500: 229989, (2021).
  • [33] Kondaguli, R. S., and Malaji, P. V., “Geometry design and performance evaluation of thermoelectric generator”, The European Physical Journal Special Topics, 231(8): 1587-1597, (2022).
  • [34] Ibeagwu, O. I., “Modelling and comprehensive analysis of TEGs with diverse variable leg geometry”, Energy, 180: 90-106, (2019).
  • [35] Luo, Y., and Kim, C. N., “Effects of the cross‐sectional area ratios and contact resistance on the performance of a cascaded thermoelectric generator”, International Journal of Energy Research, 43(6): 2172-2187, (2019).
  • [36] Siddique, A. R. M., Mahmud, S., and Heyst, B. V, “Performance comparison between rectangular and trapezoidal-shaped thermoelectric legs manufactured by a dispenser printing technique”, Energy, 196: 117089, (2020).
  • [37] Ma, Q., Fang, H., and Zhang, M., Theoretical analysis and design optimization of thermoelectric generator”, Applied Thermal Engineering, 127: 758-764, (2017).
  • [38] Liu, J., Li, Y., Li, S., and Chen, P., “Novel nanometer alumina-silica insulation board with ultra-low thermal conductivity”, Ceramics International, 48(8): 10480-10485, (2022).
  • [39] Zhang, Y., Wang, X. L., Yeoh, W. K., Zheng, R. K., and Zhang, C., “Electrical and thermoelectric properties of single-wall carbon nanotube doped Bi2Te3”, Applied Physics Letters, 101(3): 031909, (2012).
  • [40] Zhang, W., Li, M., Jia, M., Fan, Y., Zhang, Y., Tian, Z., Li, X., Liu, Y., Yang, D., Song, H, and Cabot, A., “Realizing high mechanical and thermoelectric properties of N-type Bi2Te2.7Se0.3 ingots through powder sintering and carrier concentration regulation”, Journal of the European Ceramic Society, 44: 5088-5095, (2024).
  • [41] Alrebdi, T. A., Wudil, Y. S., Ahmad, U. F., Yakasai, F. A., Mohammed, J., and Kallas, F. H. “Predicting the thermal conductivity of Bi2Te3-based thermoelectric energy materials: a machine learning approach”, International Journal of Thermal Sciences, 181: 107784, (2022).
  • [42] Malik, I., Srivastava, T., Surthi, K. K., Gayner, C., and Kar, K. K., “Enhanced thermoelectric performance of n-type Bi2Te3 alloyed with low cost and highly abundant sulfur”, Materials Chemistry and Physics, 255: 123598, (2020).
Year 2024, , 1752 - 1768, 01.12.2024
https://doi.org/10.35378/gujs.1420942

Abstract

Project Number

2023-048

References

  • [1] Shastri, S. S., and Pandey, S. K., Thermoelectricity and Advanced Thermoelectric Materials, Woodhead Publishing, (2021).
  • [2] Cao, T., Shi, X. L., Li, M., Hu, B., Chen, W., Liu, W. D., Lyu, W., MacLeod, J., and Chen, Z. G., “Advances in bismuth-telluride-based thermoelectric devices: progress and challenges”, eScience, 3(3): 100122, (2023).
  • [3] Mamur, H., Bhuiyan, M. R. A., Korkmaz, F., and Nil, M., “A review on bismuth telluride (Bi2Te3) nanostructure for thermoelectric applications”, Renewable and Sustainable Energy Reviews, 82: 4159-4169, (2018).
  • [4] Mamur, H., and Bhuiyan, M. R. A., “Characterization of Bi2Te3 nanostructure by using a cost-effective chemical solution route”, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 39(3): 23-33, (2020).
  • [5] Bhuiyan, M. R. A., Mamur, H., and Dilmaç, Ö. F., “Review on performance evaluation of Bi2Te3-based and some other thermoelectric nanostructured materials”, Current Nanoscience, 17: 423-446, (2020).
  • [6] Mamur, H., Üstüner, M. A., Dilmaç, Ö. F., and Bhuiyan, M. R. A., “Performance evaluation of Bi2Te3-xSex (0.10≤ X ≤ 1.80) thermoelectric nanostructured materials”, Cleaner Chemical Engineering, 4: 100063, (2022).
  • [7] Mamur, H., Üstüner, M. A., Korucu, H., and Bhuiyan, M. R. A., “A review of the performance evaluation of thermoelectric nanostructure materials Bi2-xSbxTe3 (0.20≤ X ≤ 1.80)”, Cleaner Chemical Engineering, 6: 100101, (2023).
  • [8] Bhuiyan, M. R. A., Korucu, H., Mamur, H., and Haque, M. M., “Growth and characterization of Bi2Te2.70Se0.30 nanostructured materials by using a cost-effective chemical solution route”, Journal of Alloys and Metallurgical Systems, 4: 100032, (2023).
  • [9] Sanin-Villa, D., Montoya, O. D., and Grisales-Noreña, L. F., “Material property characterization and parameter estimation of thermoelectric generator by using a master–slave strategy based on metaheuristics techniques”, Mathematics, 11(6): 1326, (2023).
  • [10] Demir, M. E., and Dincer, I., “Performance assessment of a thermoelectric generator applied to exhaust waste heat recovery”, Applied Thermal Engineering, 120: 694-707, (2017).
  • [11] Chiba, T., Yabuki, H., and Takashiri, M., “High thermoelectric performance of flexible nanocomposite films based on Bi2Te3 nanoplates and carbon nanotubes selected using ultracentrifugation”, Scientific Reports, 13(1): 3010, (2023).
  • [12] Jaziri, N., Boughamoura, A., Müller, J., Mezghani, B., Tounsi, F., and Ismail, M., “A comprehensive review of thermoelectric generators: technologies and common applications”, Energy Reports, 6: 264-287, (2020).
  • [13] Soleimani, Z., Zoras, S., Ceranic, B., Cui, Y., and Shahzad, S., “A comprehensive review on the output voltage/power of wearable thermoelectric generators concerning their geometry and thermoelectric materials”, Nano Energy, 89: 106325, (2021).
  • [14] Aridi, R., Faraj, J., Ali, S., Lemenand, T., and Khaled, M., “Thermoelectric power generators: state-of-the-art, heat recovery method, and challenges”, Electricity, 2(3): 359-386 (2021).
  • [15] Li, W., Paul, M. C., Montecucco, A., Knox, A. R., Siviter, J., Sellami, N., Meng, X. L., Fernandez, E. F., Mallick, T. K., Mullen, P., Ashraf, A., Samarelli, A., Llin, L. F., Paul, D. J., Gregory, D. H., Gao, M., Sweet, T., Azough, F., Lowndes, R., and Freer, R., “Multiphysics simulations of a thermoelectric generator”, Energy Procedia, 75: 633-638, (2015).
  • [16] Li, W., Paul, M. C., Montecucco, A., Siviter, J., Knox, A. R., Sweet, T., Gao, M., Baig, H., Mallick, T. K., Han, G., Gregory, D. H., Azough, F., and Freer, R., “Multiphysics simulations of thermoelectric generator modules with cold and hot blocks and effects of some factors”, Case Studies in Thermal Engineering, 10: 63-72, (2017).
  • [17] Hasan, M. K., Üstüner, M. A., Mamur, H., and Bhuiyan, M. R. A., “Enhancing Bi2Te2.70Se0.30 thermoelectric module performance through COMSOL simulations”, Thermo, 4: 185-201, (2024).
  • [18] Şişik, B., and LeBlanc, S., “The influence of leg shape on thermoelectric performance under constant temperature and heat flux boundary conditions”, Frontiers in Materials, 7: 595955, (2020).
  • [19] Xu, H., Zhang, Q., Yi, L., Huang, S., Yang, H., Li, Y., Guo, Z., Hu, H., Sun, P., Tan, X., Liu, G. G., Song K., and Jiang, J., “High performance of Bi2Te3-based thermoelectric generator owing to pressure in fabrication process”, Applied Energy, 326: 119959, (2022).
  • [20] Wu, X., Wang, Z., Liu, Y., Sun, X., Xu, Y., Tian, Y., Wang, B., Sang, X., Shi, J., and Xiong, R., “Enhanced performance of Bi2Te3-based thermoelectric materials by incorporating Bi2Fe4O9 magnetic nanoparticles”, Journal of Alloys and Compounds, 904: 163933, (2022).
  • [21] Rogl, G., and Rogl, P., “Skutterudites, a most promising group of thermoelectric materials”, Current Opinion in Green and Sustainable Chemistry, 4: 50-57, (2017).
  • [22] Nan, B., Xu, G., Liu, W. M., Yang, Q., Zhang, B., Dong, Y., Tie, J., Guo, T., and Zhou, X., “High thermoelectric performance of PNP abrupt heterostructures by independent regulation of the electrical conductivity and Seebeck coefficient”, Materials Today Communications, 31: 103343, (2022).
  • [23] Jouhara, H., Żabnieńska-Góra, A., Khordehgah, N., Doraghi, Q., Ahmad, L., Norman, L., Axcell, B., Wrobel, L., and Dai, S., “Thermoelectric generator (TEG) technologies and applications”, International Journal of Thermofluids, 9: 100063, (2021).
  • [24] Luo, Y., Li, L., Chen, Y., and Kim, C. N., “Influence of geometric parameter and contact resistances on the thermal-electric behavior of a segmented TEG”, Energy, 254: 124487, (2022).
  • [25] Wilhelmy, S., Zimare, A., Lippmann, S., and Rettenmayr, M., “A temperature gradient evaluation method for determining temperature dependent thermal conductivities”, Measurement Science and Technology, 32(10): 105601, (2021).
  • [26] Hasan, M. K., Haque, M. M., Üstüner, M. A., Mamur, H., and Bhuiyan, M. R. A., “Optimizing the performance of Bi2Te3 TECs through numerical simulations using COMSOL multiphysics”, Journal of Alloys and Metallurgical Systems, 5: 100056, (2024).
  • [27] Liang, Z., Deng, L., Shi, X., Song, S., Xu, C., Chu, C. W., and Ren, Z., “Composition-dependent contact resistivity in an n-type Mg3SbxBi2− x thermoelectric single leg”, Materials Today Energy, 29: 101099, (2022).
  • [28] Khan, S., Cheema, T. A., Hassan, M., Malik, M. S., and Park, C. W., “Thermoelectric investigation of low-cost modular night-time electricity generation”, Heat and Mass Transfer, 58(8): 1381-1391, (2022).
  • [29] Aljaghtham, M., and Celik, E. “Design of cascade thermoelectric generation systems with improved thermal reliability”, Energy, 243: 123032, (2022).
  • [30] Shittu, S., Li, G., Zhao, X. and Ma, X., “Review of thermoelectric geometry and structure optimization for performance enhancement”, Applied Energy, 268: 115075, (2020).
  • [31] Basu, R., and Singh, A., “High temperature Si–Ge alloy towards thermoelectric applications: a comprehensive review”, Materials Today Physics, 21: 100468, (2021).
  • [32] Maduabuchi, C., Njoku, H., Eke, M., Mgbemene, C., Lamba, R., and Ibrahim, J. S., “Overall performance optimisation of tapered leg geometry based solar thermoelectric generators under isoflux conditions”, Journal of Power Sources, 500: 229989, (2021).
  • [33] Kondaguli, R. S., and Malaji, P. V., “Geometry design and performance evaluation of thermoelectric generator”, The European Physical Journal Special Topics, 231(8): 1587-1597, (2022).
  • [34] Ibeagwu, O. I., “Modelling and comprehensive analysis of TEGs with diverse variable leg geometry”, Energy, 180: 90-106, (2019).
  • [35] Luo, Y., and Kim, C. N., “Effects of the cross‐sectional area ratios and contact resistance on the performance of a cascaded thermoelectric generator”, International Journal of Energy Research, 43(6): 2172-2187, (2019).
  • [36] Siddique, A. R. M., Mahmud, S., and Heyst, B. V, “Performance comparison between rectangular and trapezoidal-shaped thermoelectric legs manufactured by a dispenser printing technique”, Energy, 196: 117089, (2020).
  • [37] Ma, Q., Fang, H., and Zhang, M., Theoretical analysis and design optimization of thermoelectric generator”, Applied Thermal Engineering, 127: 758-764, (2017).
  • [38] Liu, J., Li, Y., Li, S., and Chen, P., “Novel nanometer alumina-silica insulation board with ultra-low thermal conductivity”, Ceramics International, 48(8): 10480-10485, (2022).
  • [39] Zhang, Y., Wang, X. L., Yeoh, W. K., Zheng, R. K., and Zhang, C., “Electrical and thermoelectric properties of single-wall carbon nanotube doped Bi2Te3”, Applied Physics Letters, 101(3): 031909, (2012).
  • [40] Zhang, W., Li, M., Jia, M., Fan, Y., Zhang, Y., Tian, Z., Li, X., Liu, Y., Yang, D., Song, H, and Cabot, A., “Realizing high mechanical and thermoelectric properties of N-type Bi2Te2.7Se0.3 ingots through powder sintering and carrier concentration regulation”, Journal of the European Ceramic Society, 44: 5088-5095, (2024).
  • [41] Alrebdi, T. A., Wudil, Y. S., Ahmad, U. F., Yakasai, F. A., Mohammed, J., and Kallas, F. H. “Predicting the thermal conductivity of Bi2Te3-based thermoelectric energy materials: a machine learning approach”, International Journal of Thermal Sciences, 181: 107784, (2022).
  • [42] Malik, I., Srivastava, T., Surthi, K. K., Gayner, C., and Kar, K. K., “Enhanced thermoelectric performance of n-type Bi2Te3 alloyed with low cost and highly abundant sulfur”, Materials Chemistry and Physics, 255: 123598, (2020).
There are 42 citations in total.

Details

Primary Language English
Subjects Electrical Engineering (Other)
Journal Section Electrical & Electronics Engineering
Authors

Md. Kamrul Hasan 0009-0001-6226-3119

Mehmet Ali Üstüner 0000-0003-1846-8974

Haluk Korucu 0000-0001-6763-3249

Mohammad Ruhul Amin Bhuiyan 0000-0001-7335-4158

Hayati Mamur 0000-0001-7555-5826

Project Number 2023-048
Early Pub Date July 23, 2024
Publication Date December 1, 2024
Submission Date January 17, 2024
Acceptance Date May 12, 2024
Published in Issue Year 2024

Cite

APA Hasan, M. K., Üstüner, M. A., Korucu, H., Bhuiyan, M. R. A., et al. (2024). Influence of Leg Geometry on the Performance of Bi2Te3 Thermoelectric Generators. Gazi University Journal of Science, 37(4), 1752-1768. https://doi.org/10.35378/gujs.1420942
AMA Hasan MK, Üstüner MA, Korucu H, Bhuiyan MRA, Mamur H. Influence of Leg Geometry on the Performance of Bi2Te3 Thermoelectric Generators. Gazi University Journal of Science. December 2024;37(4):1752-1768. doi:10.35378/gujs.1420942
Chicago Hasan, Md. Kamrul, Mehmet Ali Üstüner, Haluk Korucu, Mohammad Ruhul Amin Bhuiyan, and Hayati Mamur. “Influence of Leg Geometry on the Performance of Bi2Te3 Thermoelectric Generators”. Gazi University Journal of Science 37, no. 4 (December 2024): 1752-68. https://doi.org/10.35378/gujs.1420942.
EndNote Hasan MK, Üstüner MA, Korucu H, Bhuiyan MRA, Mamur H (December 1, 2024) Influence of Leg Geometry on the Performance of Bi2Te3 Thermoelectric Generators. Gazi University Journal of Science 37 4 1752–1768.
IEEE M. K. Hasan, M. A. Üstüner, H. Korucu, M. R. A. Bhuiyan, and H. Mamur, “Influence of Leg Geometry on the Performance of Bi2Te3 Thermoelectric Generators”, Gazi University Journal of Science, vol. 37, no. 4, pp. 1752–1768, 2024, doi: 10.35378/gujs.1420942.
ISNAD Hasan, Md. Kamrul et al. “Influence of Leg Geometry on the Performance of Bi2Te3 Thermoelectric Generators”. Gazi University Journal of Science 37/4 (December 2024), 1752-1768. https://doi.org/10.35378/gujs.1420942.
JAMA Hasan MK, Üstüner MA, Korucu H, Bhuiyan MRA, Mamur H. Influence of Leg Geometry on the Performance of Bi2Te3 Thermoelectric Generators. Gazi University Journal of Science. 2024;37:1752–1768.
MLA Hasan, Md. Kamrul et al. “Influence of Leg Geometry on the Performance of Bi2Te3 Thermoelectric Generators”. Gazi University Journal of Science, vol. 37, no. 4, 2024, pp. 1752-68, doi:10.35378/gujs.1420942.
Vancouver Hasan MK, Üstüner MA, Korucu H, Bhuiyan MRA, Mamur H. Influence of Leg Geometry on the Performance of Bi2Te3 Thermoelectric Generators. Gazi University Journal of Science. 2024;37(4):1752-68.