Research Article
BibTex RIS Cite

Year 2016, Volume: 29 Issue: 2, 335 - 341, 20.06.2016
https://izlik.org/JA82SX65XE

Abstract

References

  • Bulut, Y. M., Arslan, O. Matrix variate t-distribution: properties, parameter estimation and application to robust statistical analysis, (submitted), (2015).
  • Cabral, C., Lachos, V., Prates, M. Multivariate mixture modeling using skew-normal independent distributions. Computational Statistics and Data Analysis, 56, 126–142, (2012).
  • Dawid, A.P. Some matrix-variate distribution theory: notational considerations and a Bayesian application. Biometrika 68, 265–274, (1981).
  • Dempster, A. P., Laird, N. M., Rubin, D. B. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39(1), 1-38, (1977).
  • DeWall, D. J. Matrix-variate distributions. In: Knotz, S., Johnson, N.L. (eds.): Encyclopedia of Statistical Sciences, vol. 5, pp. 326–333, Wiley, New York, (1988).
  • Dutilleul, P. The MLE algorithm for the matrix normal distribution. Journal of Statistical Computation and Simulation, 64 (2), 105–123, (1999).
  • Frühwirth-Schnatter, S. Finite Mixture and Markov Switching Models. Springer, New York, (2006).
  • Gupta, A. K., Varga, T., Bodnar, T. Elliptically Contoured Models in Statistics and Portfolio Theory. Springer, New York, (2013).
  • Lin, T. I. Maximum likelihood estimation for multivariate skew normal mixture models. Journal of Multivariate Analysis, 100, 257–265, (2009).
  • Lin, T. I. Robust mixture modeling using multivariate skew t distributions. Statistics and Computing, 20, 343–356, (2010).
  • McLachlan, G. J., Basord, K. E. Mixture Models: Inference and Application to Clustering. Marcel Dekker, New York, (1988).
  • McLachlan, G. J., Peel, D. Finite Mixture Models. Wiley, New York, (2000).
  • O’Hagan, A., Murphy, T. B., Gormley, I. C., McNicholas, P., Karlis, D. Clustering with the multivariate normal inverse Gaussian distribution. Computational Statistics and Data Analysis (in press), (2015).
  • Peel, D., McLachlan, G. J. Robust mixture modelling using the t distribution. Statistics and Computing, 10, 339-348, (2000).
  • Pyne, S., Hu, X., Wang, K., Rossin, E., Lin, T., Maier, L. M. Automated high-dimensional flow cytometric data analysis. Proceedings of the National Academy of Sciences USA 106, 8519-8524, (2009).
  • Rowe, B. R. Multivariate Bayesian Statistics. Chapman and Hall/CRC, London/Boca Raton, (2003).
  • Srivastava, M., Khatri, C. An Introduction to Multivariate Statistics. North Holland, New York, USA, (1979).
  • Srivastava, M., Nahtman, T., von Rosen, D. Models with a Kronecker product covariance structure. Estimation and testing. Mathematical Methods of Statistics, 17(4), 357–370, (2008).
  • Titterington, D. M., Smith, A. F. M., Markov, U. E. Statistical Analysis of Finite Mixture Distributions. Wiley, New York, (1985).
  • Viroli, C. Finite mixtures of matrix normal distributions for classifying three-way data. Statistical Computing, 21, 511–522, (2011).

Finite Mixtures of Matrix Variate t Distributions

Year 2016, Volume: 29 Issue: 2, 335 - 341, 20.06.2016
https://izlik.org/JA82SX65XE

Abstract

Finite mixture of multivariate t distributions (Peel and McLachlan, 2000) was introduced as an alternative to the finite mixture of multivariate normal distributions to model datasets with heavy tails. In this study, we define the finite mixture of matrix variate t distributions as an extension of finite mixture of multivariate t distributions. Mixture of matrix variate t distributions can provide an alternative robust model to the mixture of matrix variate normal distributions (Viroli, 2011) for modeling matrix variate datasets with heavy tails. We give an Expectation Maximization (EM) algorithm to find the maximum likelihood (ML) estimators for the parameters of interest. We also provide a small simulation study to illustrate the performance of the proposed EM algorithm for finding estimates.

References

  • Bulut, Y. M., Arslan, O. Matrix variate t-distribution: properties, parameter estimation and application to robust statistical analysis, (submitted), (2015).
  • Cabral, C., Lachos, V., Prates, M. Multivariate mixture modeling using skew-normal independent distributions. Computational Statistics and Data Analysis, 56, 126–142, (2012).
  • Dawid, A.P. Some matrix-variate distribution theory: notational considerations and a Bayesian application. Biometrika 68, 265–274, (1981).
  • Dempster, A. P., Laird, N. M., Rubin, D. B. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39(1), 1-38, (1977).
  • DeWall, D. J. Matrix-variate distributions. In: Knotz, S., Johnson, N.L. (eds.): Encyclopedia of Statistical Sciences, vol. 5, pp. 326–333, Wiley, New York, (1988).
  • Dutilleul, P. The MLE algorithm for the matrix normal distribution. Journal of Statistical Computation and Simulation, 64 (2), 105–123, (1999).
  • Frühwirth-Schnatter, S. Finite Mixture and Markov Switching Models. Springer, New York, (2006).
  • Gupta, A. K., Varga, T., Bodnar, T. Elliptically Contoured Models in Statistics and Portfolio Theory. Springer, New York, (2013).
  • Lin, T. I. Maximum likelihood estimation for multivariate skew normal mixture models. Journal of Multivariate Analysis, 100, 257–265, (2009).
  • Lin, T. I. Robust mixture modeling using multivariate skew t distributions. Statistics and Computing, 20, 343–356, (2010).
  • McLachlan, G. J., Basord, K. E. Mixture Models: Inference and Application to Clustering. Marcel Dekker, New York, (1988).
  • McLachlan, G. J., Peel, D. Finite Mixture Models. Wiley, New York, (2000).
  • O’Hagan, A., Murphy, T. B., Gormley, I. C., McNicholas, P., Karlis, D. Clustering with the multivariate normal inverse Gaussian distribution. Computational Statistics and Data Analysis (in press), (2015).
  • Peel, D., McLachlan, G. J. Robust mixture modelling using the t distribution. Statistics and Computing, 10, 339-348, (2000).
  • Pyne, S., Hu, X., Wang, K., Rossin, E., Lin, T., Maier, L. M. Automated high-dimensional flow cytometric data analysis. Proceedings of the National Academy of Sciences USA 106, 8519-8524, (2009).
  • Rowe, B. R. Multivariate Bayesian Statistics. Chapman and Hall/CRC, London/Boca Raton, (2003).
  • Srivastava, M., Khatri, C. An Introduction to Multivariate Statistics. North Holland, New York, USA, (1979).
  • Srivastava, M., Nahtman, T., von Rosen, D. Models with a Kronecker product covariance structure. Estimation and testing. Mathematical Methods of Statistics, 17(4), 357–370, (2008).
  • Titterington, D. M., Smith, A. F. M., Markov, U. E. Statistical Analysis of Finite Mixture Distributions. Wiley, New York, (1985).
  • Viroli, C. Finite mixtures of matrix normal distributions for classifying three-way data. Statistical Computing, 21, 511–522, (2011).
There are 20 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Fatma Zehra Doğru

Yakup Murat Bulut

Olcay Arslan

Publication Date June 20, 2016
IZ https://izlik.org/JA82SX65XE
Published in Issue Year 2016 Volume: 29 Issue: 2

Cite

APA Doğru, F. Z., Bulut, Y. M., & Arslan, O. (2016). Finite Mixtures of Matrix Variate t Distributions. Gazi University Journal of Science, 29(2), 335-341. https://izlik.org/JA82SX65XE
AMA 1.Doğru FZ, Bulut YM, Arslan O. Finite Mixtures of Matrix Variate t Distributions. Gazi University Journal of Science. 2016;29(2):335-341. https://izlik.org/JA82SX65XE
Chicago Doğru, Fatma Zehra, Yakup Murat Bulut, and Olcay Arslan. 2016. “Finite Mixtures of Matrix Variate T Distributions”. Gazi University Journal of Science 29 (2): 335-41. https://izlik.org/JA82SX65XE.
EndNote Doğru FZ, Bulut YM, Arslan O (June 1, 2016) Finite Mixtures of Matrix Variate t Distributions. Gazi University Journal of Science 29 2 335–341.
IEEE [1]F. Z. Doğru, Y. M. Bulut, and O. Arslan, “Finite Mixtures of Matrix Variate t Distributions”, Gazi University Journal of Science, vol. 29, no. 2, pp. 335–341, June 2016, [Online]. Available: https://izlik.org/JA82SX65XE
ISNAD Doğru, Fatma Zehra - Bulut, Yakup Murat - Arslan, Olcay. “Finite Mixtures of Matrix Variate T Distributions”. Gazi University Journal of Science 29/2 (June 1, 2016): 335-341. https://izlik.org/JA82SX65XE.
JAMA 1.Doğru FZ, Bulut YM, Arslan O. Finite Mixtures of Matrix Variate t Distributions. Gazi University Journal of Science. 2016;29:335–341.
MLA Doğru, Fatma Zehra, et al. “Finite Mixtures of Matrix Variate T Distributions”. Gazi University Journal of Science, vol. 29, no. 2, June 2016, pp. 335-41, https://izlik.org/JA82SX65XE.
Vancouver 1.Doğru FZ, Bulut YM, Arslan O. Finite Mixtures of Matrix Variate t Distributions. Gazi University Journal of Science [Internet]. 2016 June 1;29(2):335-41. Available from: https://izlik.org/JA82SX65XE