Research Article
BibTex RIS Cite
Year 2019, , 1271 - 1281, 01.12.2019
https://doi.org/10.35378/gujs.513525

Abstract

References

  • [1] Gosavi, S.R., Nikam, C.P., Shelke, A.R., Patil, A.M., Ryu, S.-W., Bhat, J.S. and Deshpande, N.G., “Chemical synthesis of porous web-structured CdS thin films for photosensor applications”, Mater. Chem. Phys., 160: 244, (2015)
  • [2] Heiba, Z.K., Mohamed, M.B. and Imam, N.G., “Fine-tune optical absorption and light emitting behavior of the CdS/PVA hybridized film nanocomposite”, J. Mol. Struct., 1136: 321, (2017)
  • [3] Wang, W., Liu, Z. and Wang, G., “Synthesis of CdS nanoparticles by a novel and simple one-step, solid state reaction in the presence of nonionic surfactant”, Mater. Lett., 57: 2755, (2003)
  • [4] Srinivasa-Rao, B., Rajesh-Kumar, B., Rajagopal-Reddy, V. and Subba-Rao, T., “Preparation and characterization of CdS nanoparticles by chemical co-precipitation technique”, Chalcogenide Lett., 8: 177, (2011)
  • [5] Junkermeier, C.E., Lewis, J.P. and Bryant, G.W., “Amorphous nature of small CdS nanoparticles: molecular dynamics simulations”, Phys. Rev. B., 79: 125323-1, (2009)
  • [6] Mazumder, S., Dey, R., Mitra, M.K., Mukherjee, S. and Das, G.C., “Review: biofunctionalized Quantum Dots in Biology and Medicine”, J. Nanomater., 2009: 1, (2009)
  • [7] Baghchesara, M.A., Yousefi, R., Cheraghizade, M., Jamali-Sheini, F. and Saáedi, A., “Photocurrent application of Zn-doped CdS nanostructures grown by thermal evaporation method”, Ceram. Int., 42(1): 1891, (2016)
  • [8] Zhao, J.G., Hua, Z.H. and Yao, Y., “Solvothermal synthesis and characterization of one-dimensional CdS nanowires”, Superlattices Microstruct., 61: 146, (2013)
  • [9] Guoa, X., Chen, C., Song, W., Wang, X., Di, W. and Qin, W., “CdS embedded TiO2 hybrid nanospheres for visible light photocatalysis”, J. Mol. Catal. A: Chem., 387: 1, (2014)
  • [10] Wang, Y., Yang, X., Ma, Q., Kong, J., Jia, H., Wang, Z. and Yu, M., “Preparation of flower -like CdS with SDBS as surfactant by hydrothermal method and its optical properties”, Appl. Surf. Sci., 340: 18, (2015)
  • [11] Tang, K.-B., Qian, Y.-T., Zeng, J.-H. and Yang, X.-G., “Solvothermal Route to Semiconductor Nanowires”, Adv. Mater., 15: 448, (2003)
  • [12] Salavati-Niasari, M., Loghman-Estarki, M.R. and Davar, F., “Controllable synthesis of nanocrystalline CdS with different morphologies by hydrothermal process in the presence of thioglycolic acid”, Chem. Eng. J., 145: 346, (2008)
  • [13] Leal-Cruz, A.L., Berman-Mendoza, D., Vera-Marquina, A., García-Juárez, A., VillaVelazquez-Mendoza, C. and Zaldívar-Huerta, I.E., “Synthesis and characterization of CBD-CdS nanospheres”, 23rd International Conference on Electronics, Communications and Computing, Cholula-Mexico, 2013, DOI:10.1109/CONIELECOMP.2013.6525797
  • [14] Datta, A., Kar, S., Ghatak, J. and Chaudhuri, S., “Solvothermal synthesis of CdS nanorods: Role of basic experimental parameters”, J. Nanosci. Nanotechnol., 7: 677, (2007)
  • [15] Vázquez, A., Serrano, T., Kharisov, B. and Gómez, I., “Morphological control of cadmium sulfide nanostructures by electrophoretic deposition”, Particuology, 24: 73, (2016)
  • [16] Pandya, S. and Raval, K., “Investigation of structural, morphological and optical properties of cadmium sulphide (CdS) thin films at different Cd/S concentration deposited by chemical technique”, J. Mater. Sci: Mater Electron, 28: 18031, (2017)
  • [17] Thambidurai, M., Murugan, N., Muthukumarasamy, N., Agilan, S., Vasantha, S. and Balasundaraprabhu, R., “Influence of the Cd/S Molar Ratio on the Optical and Structural Properties of Nanocrystalline CdS Thin Films”, J. Mater. Sci. Technol., 26(3): 193, (2010)
  • [18] Kumar, S., Sharma, P. and Sharma, V., “Structural transition in II-VI nanofilms: Effect of molar ratio on structural, morphological, and optical properties”, J. Appl. Phys., 111: 113510, (2012)
  • [19] Rodríguez-Rosales, K., Quiñones-Galván, J.G., Guillén-Cervantes, A., Campos-González, E., Santos-Cruz, J., Mayén-Hernández, S.A., Arias-Cerón, J.S., Olvera, M. de la L., Zelaya-Angel, O., Hernández-Hernández, L.A., Contreras-Puente, G. and Moure-Flores, F. de, “Nanocrystalline-CdS thin films grown on flexible PET-substrates by chemical bath deposition”, Mater. Res. Exp., 4(7): 075904, (2017)
  • [20] Cao, M., Suna, Y., Wua, J., Chena, X. and Daia, N., “Effects of cadmium salts on the structure, morphology and optical properties of acidic chemical bath deposited CdS thin films”, J. Alloys Compd., 508: 297, (2010)
  • [21] Lin, G., Zheng, J. and Xu, R., “Template-free synthesis of uniform CdS hollow nanospheres and their photocatalytic activities”, J. Phys. Chem. C, 112(19): 7363, (2008)
  • [22] Zhao, X.H., Wei, A.X., Zhao, Y. and Liu, J., “Structural and optical properties of CdS thin films prepared by chemical bath deposition at different ammonia concentration and S/Cd molar ratios”, J. Mater. Sci: Mater Electron, 24: 457, (2013)
  • [23] Lopes, P.A.L., Santos, M.B., Mascarenhasa, A.J.S. and Silva, L.A., “Synthesis of CdS nano-spheres by a simple and fast sonochemical method at room temperature”, Mater. Lett., 136: 111, (2014)
  • [24] Tauc, J., Grigorovici, R. and Vancu, A., “Optical properties and electronic structure of amorphous germanium”, Phys. Status Solidi B, 15: 627, (1966)
  • [25] Kumar, R., Das, R., Gupta, M. and Ganesan, V., “Compositional effect of antimony on structural, optical, and photoluminescence properties of chemically deposited (Cd1−xSbx)S thin films”, Superlattices Microstruct., 59: 29, (2013)
  • [26] Kumar, P., Saxena, N., Chandra, R., Gao, K., Zhou, S., Agarwal, A., Singh, F., Gupta, V. and Kanjilal, D., “SHI induced enhancement in green emission from nanocrystalline CdS thin films for photonic applications”, J. Lumin., 147: 184, (2014)
  • [27] Ji, X., Li, H., Cheng, S., Wu, Z., Xie, Y., Dong, X. and Yan, P., “Growth and photoluminescence of CdS and CdS:Mn Nanoribbons”, Mater. Lett. 65: 2776, (2011)
  • [28] Xiao, Q. and Xiao, C., “Surface-defect-states photoluminescence in CdS nanocrystals prepared by one-step aqueous synthesis method”, Appl. Surf. Sci., 255(16): 7111, (2009)
  • [29] Cruz, J.S., Pérez, R.C., Delgado, G.T. and Angel, O.Z., “CdS thin films doped with metal-organic salts using chemical bath deposition”, Thin Solid Films, 518(7): 1791, (2010)
  • [30] Yılmaz, S., Polat, I., Atasoy, Y. and Bacaksız, E., “Structural, morphological, optical and electrical evolution of spray deposited ZnO rods co-doped with indium and sulphur atoms”, J. Mater. Sci. Mater. Electron, 25(4): 1810, (2014)

A Study on Hydrothermal Grown CdS Nanospheres: Effects of Cd/S Molar Ratio

Year 2019, , 1271 - 1281, 01.12.2019
https://doi.org/10.35378/gujs.513525

Abstract

The study reports the influences of altering
of Cd/S molar ratio on some physical properties of hydrothermal grown CdS
nanospheres. Cd/S
molar ratios were chosen as 1:0.5, 1:1, 1:2, 1:3 and 1:4 in the stock
solution. X-ray diffraction (XRD) data showed the occurrence of nano-amorphous
CdS structure. Scanning electron microscopy (SEM) conclusions illustrated that
increasing Cd/S molar ratio up to 1:3 caused a growth in the sphere size
whereas further rising of Cd/S molar ratio led to smaller sphere size. The
presence of Cd and S atoms in CdS structure was approved by Energy dispersive
x-ray spectroscopy (EDS) analysis. Optimum transparency was found by Cd/S molar
ratio of 1:3. Band gap scores of CdS nanospheres were determined to be above
2.60 eV that was bigger than bulk CdS (2.42 eV) because of quantum confinement
effect. Photoluminescence (PL) results showed that a gradual decrease in each
peak was attained upon increasing Cd/S molar ratio, which could be due to the
formation non-radiative recombination phenomenon. Electrical data demonstrated
that CdS nanosphere having Cd/S molar ratio of 1:1 exhibited the best carrier
density (1.48
´1015cm-3)
and resistivity (1.27
´103
Ω.cm) values. Thus, it can be deduced
that Cd/S molar ratio of 1:3 was obtained to be optimum one since it possesses
both bigger sphere size and better transparency, facilitating the effective use
of CdS nanospheres in the solar cells. 

References

  • [1] Gosavi, S.R., Nikam, C.P., Shelke, A.R., Patil, A.M., Ryu, S.-W., Bhat, J.S. and Deshpande, N.G., “Chemical synthesis of porous web-structured CdS thin films for photosensor applications”, Mater. Chem. Phys., 160: 244, (2015)
  • [2] Heiba, Z.K., Mohamed, M.B. and Imam, N.G., “Fine-tune optical absorption and light emitting behavior of the CdS/PVA hybridized film nanocomposite”, J. Mol. Struct., 1136: 321, (2017)
  • [3] Wang, W., Liu, Z. and Wang, G., “Synthesis of CdS nanoparticles by a novel and simple one-step, solid state reaction in the presence of nonionic surfactant”, Mater. Lett., 57: 2755, (2003)
  • [4] Srinivasa-Rao, B., Rajesh-Kumar, B., Rajagopal-Reddy, V. and Subba-Rao, T., “Preparation and characterization of CdS nanoparticles by chemical co-precipitation technique”, Chalcogenide Lett., 8: 177, (2011)
  • [5] Junkermeier, C.E., Lewis, J.P. and Bryant, G.W., “Amorphous nature of small CdS nanoparticles: molecular dynamics simulations”, Phys. Rev. B., 79: 125323-1, (2009)
  • [6] Mazumder, S., Dey, R., Mitra, M.K., Mukherjee, S. and Das, G.C., “Review: biofunctionalized Quantum Dots in Biology and Medicine”, J. Nanomater., 2009: 1, (2009)
  • [7] Baghchesara, M.A., Yousefi, R., Cheraghizade, M., Jamali-Sheini, F. and Saáedi, A., “Photocurrent application of Zn-doped CdS nanostructures grown by thermal evaporation method”, Ceram. Int., 42(1): 1891, (2016)
  • [8] Zhao, J.G., Hua, Z.H. and Yao, Y., “Solvothermal synthesis and characterization of one-dimensional CdS nanowires”, Superlattices Microstruct., 61: 146, (2013)
  • [9] Guoa, X., Chen, C., Song, W., Wang, X., Di, W. and Qin, W., “CdS embedded TiO2 hybrid nanospheres for visible light photocatalysis”, J. Mol. Catal. A: Chem., 387: 1, (2014)
  • [10] Wang, Y., Yang, X., Ma, Q., Kong, J., Jia, H., Wang, Z. and Yu, M., “Preparation of flower -like CdS with SDBS as surfactant by hydrothermal method and its optical properties”, Appl. Surf. Sci., 340: 18, (2015)
  • [11] Tang, K.-B., Qian, Y.-T., Zeng, J.-H. and Yang, X.-G., “Solvothermal Route to Semiconductor Nanowires”, Adv. Mater., 15: 448, (2003)
  • [12] Salavati-Niasari, M., Loghman-Estarki, M.R. and Davar, F., “Controllable synthesis of nanocrystalline CdS with different morphologies by hydrothermal process in the presence of thioglycolic acid”, Chem. Eng. J., 145: 346, (2008)
  • [13] Leal-Cruz, A.L., Berman-Mendoza, D., Vera-Marquina, A., García-Juárez, A., VillaVelazquez-Mendoza, C. and Zaldívar-Huerta, I.E., “Synthesis and characterization of CBD-CdS nanospheres”, 23rd International Conference on Electronics, Communications and Computing, Cholula-Mexico, 2013, DOI:10.1109/CONIELECOMP.2013.6525797
  • [14] Datta, A., Kar, S., Ghatak, J. and Chaudhuri, S., “Solvothermal synthesis of CdS nanorods: Role of basic experimental parameters”, J. Nanosci. Nanotechnol., 7: 677, (2007)
  • [15] Vázquez, A., Serrano, T., Kharisov, B. and Gómez, I., “Morphological control of cadmium sulfide nanostructures by electrophoretic deposition”, Particuology, 24: 73, (2016)
  • [16] Pandya, S. and Raval, K., “Investigation of structural, morphological and optical properties of cadmium sulphide (CdS) thin films at different Cd/S concentration deposited by chemical technique”, J. Mater. Sci: Mater Electron, 28: 18031, (2017)
  • [17] Thambidurai, M., Murugan, N., Muthukumarasamy, N., Agilan, S., Vasantha, S. and Balasundaraprabhu, R., “Influence of the Cd/S Molar Ratio on the Optical and Structural Properties of Nanocrystalline CdS Thin Films”, J. Mater. Sci. Technol., 26(3): 193, (2010)
  • [18] Kumar, S., Sharma, P. and Sharma, V., “Structural transition in II-VI nanofilms: Effect of molar ratio on structural, morphological, and optical properties”, J. Appl. Phys., 111: 113510, (2012)
  • [19] Rodríguez-Rosales, K., Quiñones-Galván, J.G., Guillén-Cervantes, A., Campos-González, E., Santos-Cruz, J., Mayén-Hernández, S.A., Arias-Cerón, J.S., Olvera, M. de la L., Zelaya-Angel, O., Hernández-Hernández, L.A., Contreras-Puente, G. and Moure-Flores, F. de, “Nanocrystalline-CdS thin films grown on flexible PET-substrates by chemical bath deposition”, Mater. Res. Exp., 4(7): 075904, (2017)
  • [20] Cao, M., Suna, Y., Wua, J., Chena, X. and Daia, N., “Effects of cadmium salts on the structure, morphology and optical properties of acidic chemical bath deposited CdS thin films”, J. Alloys Compd., 508: 297, (2010)
  • [21] Lin, G., Zheng, J. and Xu, R., “Template-free synthesis of uniform CdS hollow nanospheres and their photocatalytic activities”, J. Phys. Chem. C, 112(19): 7363, (2008)
  • [22] Zhao, X.H., Wei, A.X., Zhao, Y. and Liu, J., “Structural and optical properties of CdS thin films prepared by chemical bath deposition at different ammonia concentration and S/Cd molar ratios”, J. Mater. Sci: Mater Electron, 24: 457, (2013)
  • [23] Lopes, P.A.L., Santos, M.B., Mascarenhasa, A.J.S. and Silva, L.A., “Synthesis of CdS nano-spheres by a simple and fast sonochemical method at room temperature”, Mater. Lett., 136: 111, (2014)
  • [24] Tauc, J., Grigorovici, R. and Vancu, A., “Optical properties and electronic structure of amorphous germanium”, Phys. Status Solidi B, 15: 627, (1966)
  • [25] Kumar, R., Das, R., Gupta, M. and Ganesan, V., “Compositional effect of antimony on structural, optical, and photoluminescence properties of chemically deposited (Cd1−xSbx)S thin films”, Superlattices Microstruct., 59: 29, (2013)
  • [26] Kumar, P., Saxena, N., Chandra, R., Gao, K., Zhou, S., Agarwal, A., Singh, F., Gupta, V. and Kanjilal, D., “SHI induced enhancement in green emission from nanocrystalline CdS thin films for photonic applications”, J. Lumin., 147: 184, (2014)
  • [27] Ji, X., Li, H., Cheng, S., Wu, Z., Xie, Y., Dong, X. and Yan, P., “Growth and photoluminescence of CdS and CdS:Mn Nanoribbons”, Mater. Lett. 65: 2776, (2011)
  • [28] Xiao, Q. and Xiao, C., “Surface-defect-states photoluminescence in CdS nanocrystals prepared by one-step aqueous synthesis method”, Appl. Surf. Sci., 255(16): 7111, (2009)
  • [29] Cruz, J.S., Pérez, R.C., Delgado, G.T. and Angel, O.Z., “CdS thin films doped with metal-organic salts using chemical bath deposition”, Thin Solid Films, 518(7): 1791, (2010)
  • [30] Yılmaz, S., Polat, I., Atasoy, Y. and Bacaksız, E., “Structural, morphological, optical and electrical evolution of spray deposited ZnO rods co-doped with indium and sulphur atoms”, J. Mater. Sci. Mater. Electron, 25(4): 1810, (2014)
There are 30 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Physics
Authors

Salih Yılmaz 0000-0002-3006-4473

Murat Tomakın This is me 0000-0003-1887-848X

Ahmet Unverdı 0000-0001-6144-1158

Abdulaziz Aboghalon This is me 0000-0002-2071-4110

Publication Date December 1, 2019
Published in Issue Year 2019

Cite

APA Yılmaz, S., Tomakın, M., Unverdı, A., Aboghalon, A. (2019). A Study on Hydrothermal Grown CdS Nanospheres: Effects of Cd/S Molar Ratio. Gazi University Journal of Science, 32(4), 1271-1281. https://doi.org/10.35378/gujs.513525
AMA Yılmaz S, Tomakın M, Unverdı A, Aboghalon A. A Study on Hydrothermal Grown CdS Nanospheres: Effects of Cd/S Molar Ratio. Gazi University Journal of Science. December 2019;32(4):1271-1281. doi:10.35378/gujs.513525
Chicago Yılmaz, Salih, Murat Tomakın, Ahmet Unverdı, and Abdulaziz Aboghalon. “A Study on Hydrothermal Grown CdS Nanospheres: Effects of Cd/S Molar Ratio”. Gazi University Journal of Science 32, no. 4 (December 2019): 1271-81. https://doi.org/10.35378/gujs.513525.
EndNote Yılmaz S, Tomakın M, Unverdı A, Aboghalon A (December 1, 2019) A Study on Hydrothermal Grown CdS Nanospheres: Effects of Cd/S Molar Ratio. Gazi University Journal of Science 32 4 1271–1281.
IEEE S. Yılmaz, M. Tomakın, A. Unverdı, and A. Aboghalon, “A Study on Hydrothermal Grown CdS Nanospheres: Effects of Cd/S Molar Ratio”, Gazi University Journal of Science, vol. 32, no. 4, pp. 1271–1281, 2019, doi: 10.35378/gujs.513525.
ISNAD Yılmaz, Salih et al. “A Study on Hydrothermal Grown CdS Nanospheres: Effects of Cd/S Molar Ratio”. Gazi University Journal of Science 32/4 (December 2019), 1271-1281. https://doi.org/10.35378/gujs.513525.
JAMA Yılmaz S, Tomakın M, Unverdı A, Aboghalon A. A Study on Hydrothermal Grown CdS Nanospheres: Effects of Cd/S Molar Ratio. Gazi University Journal of Science. 2019;32:1271–1281.
MLA Yılmaz, Salih et al. “A Study on Hydrothermal Grown CdS Nanospheres: Effects of Cd/S Molar Ratio”. Gazi University Journal of Science, vol. 32, no. 4, 2019, pp. 1271-8, doi:10.35378/gujs.513525.
Vancouver Yılmaz S, Tomakın M, Unverdı A, Aboghalon A. A Study on Hydrothermal Grown CdS Nanospheres: Effects of Cd/S Molar Ratio. Gazi University Journal of Science. 2019;32(4):1271-8.