Research Article
BibTex RIS Cite
Year 2020, , 690 - 700, 01.12.2020
https://doi.org/10.35378/gujs.541345

Abstract

References

  • Ratner, B.D., Hoffman, A.S., Schoen, F.J. and Lemons, J.E. (eds.), Biomaterials Science: An Introduction to Materials in Medicine, 2 nd ed., Elsevier Academic Press, New York-London, (2004).
  • Ramakrishna, S., Huang, Z.M., Kumar, G.V., Batchelor, A.W. and Mayer, J., An Introduction to Biocomposites Series on Biomaterials and Bioengineering Vol.1, Imperial College Press, London, (2004).
  • Chakraborty, J. and Basu, D., “Bioceramics-a new era”, T. Indian. Ceram. Soc., 64(4): 171-192, (2005).
  • Iyoda, K., Miura, T. and Nogami, H., “Repair of bone defect with cultured chondrocytes bound to HA”, Clin. Orthop., 288: 287-293, (1993).
  • Van Susante, J.L., Buma, P., Homminga, G.N., Van Den Berg, W.B. and Veth, R.P., “Chondrocyte-seeded hydroxyapatite for repair of large articular cartilage defects: A pilot study in the goat”, Biomaterials, 19(24): 2367-2374, (1998).
  • Shi, D. and Jiang, G., “Synthesis of hydroxyapatite films on porous Al2O3 substrate for hard tissue prosthetics”, Mater. Sci. Eng. C Mater. Biol. Appl., 6(2-3): 175-182, (1998).
  • Viswanath, B. and Ravishankar, N., “Interfacial reactions in hydroxyapatite/alumina Nanocomposites”, Scripta Mater., 55: 863-866, (2006).
  • Oktar, F.N., Agathopoulos, S., Ozyegin, L.S., Gunduz, O., Demirkol, N., Bozkurt, Y. and Salman, S., “Mechanical properties of bovine hydroxyapatite (BHA) composites doped with SiO2, MgO, Al2O3 and ZrO2”, J. Mater. Sci.: Mater. Med., 18: 2137-2143, (2007).
  • Evis, Z. and Doremus, R.H., “Coatings of hydroxyapatite-nanosize alpha alumina composites on Ti-6Al-4V”, Mater. Lett., 59: 3824-3827, (2005).
  • Kim, S., Kong, Y.M., Lee, I.S. and Kim, H.E., “Effect of calcinations of starting powder on mechanical properties of hydroxyapatite-alumina bioceramic composite”, J. Mater. Sci. Mater. Med., 13: 307-310, (2002).
  • Park, S.Y., Kim, S.J., Bang, H.G. and Song, J.H., “Effect of fluoride additive on the mechanical properties of hydroxyapatite/alumina composites”, Ceram. Int., 35: 1647-1650, (2009).
  • Yoldas, B.E., “Alumina sol preparation from alkoxides”, Am. Ceram. Soc. Bull. 54(3): 289-290, (1975).
  • Wright, J.D. and Sommerdijk, N.A.J.M., Sol-Gel Materials Chemistry and Applications Advanced Chemistry Texts, CRC Press, Boca Raton, (2001).
  • Zarzycki, J., “Past and present of sol-gel science and technology”, J. Sol-Gel Sci. Technol., 8: 17-22, (1997).
  • Uhlmann, D.R. and Teowee, G., “Sol gel science and technology: current state and future prospects”, J. Sol-Gel Sci. Technol., 13: 153-162, (1998).
  • Belleville, P., “Functional coatings”, CR. Chim., 13: 97-105, (2010).
  • Yelten, A., “Properties and Characterization of Alumina-Bovine Hydroxyapatite (BHA) Composites Produced by Sol-Gel Method”, MSc. Thesis, Istanbul University Institute of Graduate Studies in Science and Engineering, Istanbul, (2010).
  • Yelten, A., Yilmaz, S. and Oktar, F.N., “Sol–gel derived alumina–hydroxyapatite-tricalcium phosphate porous composite powders”, Ceram. Int., 38(4): 2659-2665, (2012).
  • Dressler, M., Nofz, M., Neumann, R.S., Dorfel, I. and Griepentrog, M., “Sol-gel derived alumina layers on nickel base superalloy inconel-718 (IN-718)”, Thin Solid Films, 517: 786-792, (2008).
  • Jing, C., Zhao, X. and Zhang, Y., Sol-gel fabrication of compact, crack- free alumina film, Mater. Res. Bull., 42: 600-608, (2007).
  • Nofz, M., Dorfel, I. and Sojref, R., “Microstructure of sol-gel derived corundum containing coatings”, Thin Solid Films, 515: 7145-7154, (2007).
  • Jaber, H.L., Hammood, A.S. and Parvin, N., “Synthesis and characterization of hydroxyapatite powder from natural Camelus bone”, J. Aust. Ceram. Soc., 54: 1-10, (2018).
  • Mahmoudifar, N. and Doran, P.M., “Tissue engineering of human cartilage and osteochondral composites using recirculation bioreactors”, Biomaterials, 34: 7012-7024, (2005).
  • Mahmoudifar, N. and Doran, P.M., “Effect of seeding and bio- reactor culture conditions on the development of human tissue-engineered cartilage”, Tissue Eng., 12: 1675-1685, (2006).
  • Helbing, G., “Transplantation of isolated chondrocytes in articular cartilage defects. Regeneration of adult hyaline cartilage with fetal chondrocytes”, Fortschr. Med., 100: 83-87, (1982).
  • Kalkandelen, C., Gunduz, O., Akan, A. and Oktar, F.N., “Part 1: clinoptilolite-alumina-hydroxyapatite composites for biomedical engineering”, J. Aust. Ceram. Soc. 53: 91-99, (2017).
  • Cetinkaya, G. and Arat, S., “Cryopreservation of cartilage cell and tissue for biobanking”, Cryobiology, 63(3): 292-297, (2011).
  • Cetinkaya, G., Kahraman, A.S., Gumusderelioglu, M., Arat, S. and Onur, M.A., “Derivation, characterization and expansion of fetal chondrocytes on different microcarriers”, Cytotechnology, 63(6): 633-43, (2011).
  • Liao, C.J., Lin, F.H., Chen, K.S. and Sun, J.S., “Thermal decomposition and reconstitution of hydroxyapatite in air atmosphere”, Biomaterials, 20: 1807-1813, (1999).
  • Gross, K.A., Gross, V. and Berndt, C.C., “Thermal analysis of amorphous phases in hydroxyapatite coatings”, J. Am. Ceram. Soc., 81(1): 106-112, (1998).
  • Abidi, S.S.A. and Murtaza Q., “Synthesis and characterization of nano-hydroxyapatite powder using wet chemical precipitation reaction”, J. Mater. Sci. Technol., 30(4): 307-310, (2014).
  • Kumar, R., Prakash, K.H. and Cheang, P., “Temperature driven morphological changes of chemically precipitated hydroxyapatite nanoparticles”, Langmuir, 20: 5196-5200, (2004).
  • Rehman, I. and Bonfield, W., “Characterization of hydroxyapatite and carbonated apatite by photo acoustic FTIR spectroscopy”, J. Mater. Sci-Mater. Med., 8(1): 1-4, (1997).
  • Chandrasekar, A., Sagadevan, S. and Dakshnamoorthy, A., “Synthesis and characterization of nano-hydroxyapatite (n-HAP) using the wet chemical technique”, Int. J. Phys. Sci., 8(32): 1639-1645, (2013).

In-Vitro Bioactivity Investigation of Sol-Gel Derived Alumina-Bovine Hydroxyapatite (BHA) Composite Powders

Year 2020, , 690 - 700, 01.12.2020
https://doi.org/10.35378/gujs.541345

Abstract

Alumina (α-Al2O3) and hydroxyapatite (HA, Ca10(PO4)6(OH)2) are well-known for being clinically successful bioceramic materials. In this work, in-vitro biological characterization of the sol-gel alumina-bovine hydroxyapatite composite powders was realized. Alumina powders were synthesized through the sol-gel process. First, boehmite (AlOOH) sol was prepared utilizing aluminium isopropoxide (Al(OC3H7)3, AIP) as the starting precursor. Bovine hydroxyapatite (BHA) powders, which can be defined as naturally derived calcium phosphate powders were added as 10, 20, 30, and 50% wt. of AIP to each AlOOH sol. Homogeneous dispersion of the BHA powders in the AlOOH sol was managed due to employing Na-alginate as a kind of thickener. Gelation of the AlOOH-BHA mixtures was carried out at 110 ºC for 3h. After drying, AlOOH-BHA mixtures were heat-treated at 1300 ºC for 2h. Chemical, microstructural, thermal, and physical properties of the precursors/process products were characterized with X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), X-Ray Fluorescence Spectroscopy (XRF), Differential Thermal Analysis (DTA), and Scanning Electron Microscopy - Energy Dispersive Spectroscopy (SEM-EDS) analyses. Indirect MTT assay was done to evaluate the biocompatibility of the Al2O3-BHA based biocomposite extracts using the L929 cell line. It is found that all Al2O3-BHA composite extracts with varying doses of 25% and 50% had no negative effect on the cell viability. In addition, % cell viability decreased with the increasing of the extract concentration. It can be concluded that the prepared Al2O3-BHA composites can be a good candidate for biomedical applications. 

References

  • Ratner, B.D., Hoffman, A.S., Schoen, F.J. and Lemons, J.E. (eds.), Biomaterials Science: An Introduction to Materials in Medicine, 2 nd ed., Elsevier Academic Press, New York-London, (2004).
  • Ramakrishna, S., Huang, Z.M., Kumar, G.V., Batchelor, A.W. and Mayer, J., An Introduction to Biocomposites Series on Biomaterials and Bioengineering Vol.1, Imperial College Press, London, (2004).
  • Chakraborty, J. and Basu, D., “Bioceramics-a new era”, T. Indian. Ceram. Soc., 64(4): 171-192, (2005).
  • Iyoda, K., Miura, T. and Nogami, H., “Repair of bone defect with cultured chondrocytes bound to HA”, Clin. Orthop., 288: 287-293, (1993).
  • Van Susante, J.L., Buma, P., Homminga, G.N., Van Den Berg, W.B. and Veth, R.P., “Chondrocyte-seeded hydroxyapatite for repair of large articular cartilage defects: A pilot study in the goat”, Biomaterials, 19(24): 2367-2374, (1998).
  • Shi, D. and Jiang, G., “Synthesis of hydroxyapatite films on porous Al2O3 substrate for hard tissue prosthetics”, Mater. Sci. Eng. C Mater. Biol. Appl., 6(2-3): 175-182, (1998).
  • Viswanath, B. and Ravishankar, N., “Interfacial reactions in hydroxyapatite/alumina Nanocomposites”, Scripta Mater., 55: 863-866, (2006).
  • Oktar, F.N., Agathopoulos, S., Ozyegin, L.S., Gunduz, O., Demirkol, N., Bozkurt, Y. and Salman, S., “Mechanical properties of bovine hydroxyapatite (BHA) composites doped with SiO2, MgO, Al2O3 and ZrO2”, J. Mater. Sci.: Mater. Med., 18: 2137-2143, (2007).
  • Evis, Z. and Doremus, R.H., “Coatings of hydroxyapatite-nanosize alpha alumina composites on Ti-6Al-4V”, Mater. Lett., 59: 3824-3827, (2005).
  • Kim, S., Kong, Y.M., Lee, I.S. and Kim, H.E., “Effect of calcinations of starting powder on mechanical properties of hydroxyapatite-alumina bioceramic composite”, J. Mater. Sci. Mater. Med., 13: 307-310, (2002).
  • Park, S.Y., Kim, S.J., Bang, H.G. and Song, J.H., “Effect of fluoride additive on the mechanical properties of hydroxyapatite/alumina composites”, Ceram. Int., 35: 1647-1650, (2009).
  • Yoldas, B.E., “Alumina sol preparation from alkoxides”, Am. Ceram. Soc. Bull. 54(3): 289-290, (1975).
  • Wright, J.D. and Sommerdijk, N.A.J.M., Sol-Gel Materials Chemistry and Applications Advanced Chemistry Texts, CRC Press, Boca Raton, (2001).
  • Zarzycki, J., “Past and present of sol-gel science and technology”, J. Sol-Gel Sci. Technol., 8: 17-22, (1997).
  • Uhlmann, D.R. and Teowee, G., “Sol gel science and technology: current state and future prospects”, J. Sol-Gel Sci. Technol., 13: 153-162, (1998).
  • Belleville, P., “Functional coatings”, CR. Chim., 13: 97-105, (2010).
  • Yelten, A., “Properties and Characterization of Alumina-Bovine Hydroxyapatite (BHA) Composites Produced by Sol-Gel Method”, MSc. Thesis, Istanbul University Institute of Graduate Studies in Science and Engineering, Istanbul, (2010).
  • Yelten, A., Yilmaz, S. and Oktar, F.N., “Sol–gel derived alumina–hydroxyapatite-tricalcium phosphate porous composite powders”, Ceram. Int., 38(4): 2659-2665, (2012).
  • Dressler, M., Nofz, M., Neumann, R.S., Dorfel, I. and Griepentrog, M., “Sol-gel derived alumina layers on nickel base superalloy inconel-718 (IN-718)”, Thin Solid Films, 517: 786-792, (2008).
  • Jing, C., Zhao, X. and Zhang, Y., Sol-gel fabrication of compact, crack- free alumina film, Mater. Res. Bull., 42: 600-608, (2007).
  • Nofz, M., Dorfel, I. and Sojref, R., “Microstructure of sol-gel derived corundum containing coatings”, Thin Solid Films, 515: 7145-7154, (2007).
  • Jaber, H.L., Hammood, A.S. and Parvin, N., “Synthesis and characterization of hydroxyapatite powder from natural Camelus bone”, J. Aust. Ceram. Soc., 54: 1-10, (2018).
  • Mahmoudifar, N. and Doran, P.M., “Tissue engineering of human cartilage and osteochondral composites using recirculation bioreactors”, Biomaterials, 34: 7012-7024, (2005).
  • Mahmoudifar, N. and Doran, P.M., “Effect of seeding and bio- reactor culture conditions on the development of human tissue-engineered cartilage”, Tissue Eng., 12: 1675-1685, (2006).
  • Helbing, G., “Transplantation of isolated chondrocytes in articular cartilage defects. Regeneration of adult hyaline cartilage with fetal chondrocytes”, Fortschr. Med., 100: 83-87, (1982).
  • Kalkandelen, C., Gunduz, O., Akan, A. and Oktar, F.N., “Part 1: clinoptilolite-alumina-hydroxyapatite composites for biomedical engineering”, J. Aust. Ceram. Soc. 53: 91-99, (2017).
  • Cetinkaya, G. and Arat, S., “Cryopreservation of cartilage cell and tissue for biobanking”, Cryobiology, 63(3): 292-297, (2011).
  • Cetinkaya, G., Kahraman, A.S., Gumusderelioglu, M., Arat, S. and Onur, M.A., “Derivation, characterization and expansion of fetal chondrocytes on different microcarriers”, Cytotechnology, 63(6): 633-43, (2011).
  • Liao, C.J., Lin, F.H., Chen, K.S. and Sun, J.S., “Thermal decomposition and reconstitution of hydroxyapatite in air atmosphere”, Biomaterials, 20: 1807-1813, (1999).
  • Gross, K.A., Gross, V. and Berndt, C.C., “Thermal analysis of amorphous phases in hydroxyapatite coatings”, J. Am. Ceram. Soc., 81(1): 106-112, (1998).
  • Abidi, S.S.A. and Murtaza Q., “Synthesis and characterization of nano-hydroxyapatite powder using wet chemical precipitation reaction”, J. Mater. Sci. Technol., 30(4): 307-310, (2014).
  • Kumar, R., Prakash, K.H. and Cheang, P., “Temperature driven morphological changes of chemically precipitated hydroxyapatite nanoparticles”, Langmuir, 20: 5196-5200, (2004).
  • Rehman, I. and Bonfield, W., “Characterization of hydroxyapatite and carbonated apatite by photo acoustic FTIR spectroscopy”, J. Mater. Sci-Mater. Med., 8(1): 1-4, (1997).
  • Chandrasekar, A., Sagadevan, S. and Dakshnamoorthy, A., “Synthesis and characterization of nano-hydroxyapatite (n-HAP) using the wet chemical technique”, Int. J. Phys. Sci., 8(32): 1639-1645, (2013).
There are 34 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Chemical Engineering
Authors

Azade Yelten 0000-0001-6089-6257

Okşan Karal-yılmaz This is me 0000-0001-6780-9814

Zeynep Püren Akguner This is me

Ayça Bal-ozturk

Suat Yılmaz 0000-0002-6092-9319

Publication Date December 1, 2020
Published in Issue Year 2020

Cite

APA Yelten, A., Karal-yılmaz, O., Akguner, Z. P., Bal-ozturk, A., et al. (2020). In-Vitro Bioactivity Investigation of Sol-Gel Derived Alumina-Bovine Hydroxyapatite (BHA) Composite Powders. Gazi University Journal of Science, 33(4), 690-700. https://doi.org/10.35378/gujs.541345
AMA Yelten A, Karal-yılmaz O, Akguner ZP, Bal-ozturk A, Yılmaz S. In-Vitro Bioactivity Investigation of Sol-Gel Derived Alumina-Bovine Hydroxyapatite (BHA) Composite Powders. Gazi University Journal of Science. December 2020;33(4):690-700. doi:10.35378/gujs.541345
Chicago Yelten, Azade, Okşan Karal-yılmaz, Zeynep Püren Akguner, Ayça Bal-ozturk, and Suat Yılmaz. “In-Vitro Bioactivity Investigation of Sol-Gel Derived Alumina-Bovine Hydroxyapatite (BHA) Composite Powders”. Gazi University Journal of Science 33, no. 4 (December 2020): 690-700. https://doi.org/10.35378/gujs.541345.
EndNote Yelten A, Karal-yılmaz O, Akguner ZP, Bal-ozturk A, Yılmaz S (December 1, 2020) In-Vitro Bioactivity Investigation of Sol-Gel Derived Alumina-Bovine Hydroxyapatite (BHA) Composite Powders. Gazi University Journal of Science 33 4 690–700.
IEEE A. Yelten, O. Karal-yılmaz, Z. P. Akguner, A. Bal-ozturk, and S. Yılmaz, “In-Vitro Bioactivity Investigation of Sol-Gel Derived Alumina-Bovine Hydroxyapatite (BHA) Composite Powders”, Gazi University Journal of Science, vol. 33, no. 4, pp. 690–700, 2020, doi: 10.35378/gujs.541345.
ISNAD Yelten, Azade et al. “In-Vitro Bioactivity Investigation of Sol-Gel Derived Alumina-Bovine Hydroxyapatite (BHA) Composite Powders”. Gazi University Journal of Science 33/4 (December 2020), 690-700. https://doi.org/10.35378/gujs.541345.
JAMA Yelten A, Karal-yılmaz O, Akguner ZP, Bal-ozturk A, Yılmaz S. In-Vitro Bioactivity Investigation of Sol-Gel Derived Alumina-Bovine Hydroxyapatite (BHA) Composite Powders. Gazi University Journal of Science. 2020;33:690–700.
MLA Yelten, Azade et al. “In-Vitro Bioactivity Investigation of Sol-Gel Derived Alumina-Bovine Hydroxyapatite (BHA) Composite Powders”. Gazi University Journal of Science, vol. 33, no. 4, 2020, pp. 690-0, doi:10.35378/gujs.541345.
Vancouver Yelten A, Karal-yılmaz O, Akguner ZP, Bal-ozturk A, Yılmaz S. In-Vitro Bioactivity Investigation of Sol-Gel Derived Alumina-Bovine Hydroxyapatite (BHA) Composite Powders. Gazi University Journal of Science. 2020;33(4):690-70.