Research Article
BibTex RIS Cite
Year 2020, , 456 - 474, 01.06.2020
https://doi.org/10.35378/gujs.604550

Abstract

Supporting Institution

Akdeniz University

Project Number

FBA-2018-3723.

References

  • [1] Comtet, L., Advanced Combinatorics, Reidel, Dordrecht, (1974).
  • [2] Agoh, T. and Dilcher, K., “Recurrence relations for Nörlund numbers and Bernoulli numbers of the second kind”, Fibonacci Q., 48: 4-12, (2010).
  • [3] Young, P.T., “A 2-adic formula for Bernoulli numbers of the second kind and for the Nörlund numbers”, J. Number Theory, 128: 2951-2962, (2008).
  • [4] Nörlund, N. E.,Vorlesungen Äuber Direrenzenrechnung, Springer-Verlag, Berlin, (1924).
  • [5] Cenkci, M. and Young, P.T., “Generalizations of poly-Bernoulli and poly-Cauchy numbers”, Eur. J. Math., 1:799-828, (2015).
  • [6] Komatsu, T., “Hypergeometric Cauchy numbers”, Int. J. Number Theory, 9: 545-560, (2013).
  • [7] Komatsu, T., Laohakosol,V., and Liptai, K., “A generalization of poly-Cauchy numbers and their properties”, Abstr. Appl. Anal., 2013: Article ID 179841, (2013).
  • [8] Komatsu, T., “Poly-Cauchy numbers”, Kyushu J. Math., 67: 143-153, (2013).
  • [9] Komatsu, T., “Poly-Cauchy numbers with a q parameter”, Raman. J., 31: 353-371, (2013).
  • [10] Komatsu, T., “Incomplete poly-Cauchy numbers”, Monatsh. Math., 180: 271-288, (2016).
  • [11] Komatsu, T., Mezö, I. and Szalay, L., “Incomplete Cauchy numbers”, Acta Math. Hungar., 149: 306-323, (2016).
  • [12] Komatsu, T. and Young, P.T., “Generalized Stirling numbers with poly-Bernoulli and poly-Cauchy numbers”, Int. J. Number Theory, 14(05): 1211-1222, (2018).
  • [13] Boyadzhiev, K.N., “Polyexponentials”, available from: http://arxiv.org/pdf/0710.1332v1.pdf.
  • [14] Komatsu, T. and Szalay, L., “Shifted poly-Cauchy numbers”, Lith. Math. J., 54: 166-181, (2014).
  • [15] Rahmani, M., “On p-Cauchy numbers”, Filomat, 30(10): 2731-2742, (2016).
  • [16] Lah, I., “A new kind of numbers and its application in the actuarial mathematics”, Bol. Inst. Actuár. Port., 9: 7-15, (1954).
  • [17] Rahmani, M., “Generalized Stirling transform”, Miskolc Math. Notes, 15: 677-690, (2014).
  • [18] Komatsu, T., “Sums of products of Cauchy numbers, including poly-Cauchy numbers”, J. Discrete Math., 2013: Article ID373927, (2013).
  • [19] Howard, F. T., Nörlund’s number B_n^n, Applications of Fibonacci Numbers, Vol. 5, Kluwer Acad. Publ., Dordrecht, (1993).
  • [20] Zhao, F.Z., “Sums of products of Cauchy numbers”, Discrete Mathematics, 309(12): 3830-3842, (2009).

On Cauchy Numbers and Their Generalizations

Year 2020, , 456 - 474, 01.06.2020
https://doi.org/10.35378/gujs.604550

Abstract

This paper is concerned with both kinds of the Cauchy numbers and their generalizations. Taking into account Mellin derivative, we relate p-Cauchy numbers of the second kind with shifted Cauchy numbers of the first kind, which yields new explicit formulas for the Cauchy numbers of the both kind. We introduce a generalization of the Cauchy numbers and investigate several properties, including recurrence relations, convolution identities and generating functions. In particular, these results give rise to new identities for Cauchy numbers. 

Project Number

FBA-2018-3723.

References

  • [1] Comtet, L., Advanced Combinatorics, Reidel, Dordrecht, (1974).
  • [2] Agoh, T. and Dilcher, K., “Recurrence relations for Nörlund numbers and Bernoulli numbers of the second kind”, Fibonacci Q., 48: 4-12, (2010).
  • [3] Young, P.T., “A 2-adic formula for Bernoulli numbers of the second kind and for the Nörlund numbers”, J. Number Theory, 128: 2951-2962, (2008).
  • [4] Nörlund, N. E.,Vorlesungen Äuber Direrenzenrechnung, Springer-Verlag, Berlin, (1924).
  • [5] Cenkci, M. and Young, P.T., “Generalizations of poly-Bernoulli and poly-Cauchy numbers”, Eur. J. Math., 1:799-828, (2015).
  • [6] Komatsu, T., “Hypergeometric Cauchy numbers”, Int. J. Number Theory, 9: 545-560, (2013).
  • [7] Komatsu, T., Laohakosol,V., and Liptai, K., “A generalization of poly-Cauchy numbers and their properties”, Abstr. Appl. Anal., 2013: Article ID 179841, (2013).
  • [8] Komatsu, T., “Poly-Cauchy numbers”, Kyushu J. Math., 67: 143-153, (2013).
  • [9] Komatsu, T., “Poly-Cauchy numbers with a q parameter”, Raman. J., 31: 353-371, (2013).
  • [10] Komatsu, T., “Incomplete poly-Cauchy numbers”, Monatsh. Math., 180: 271-288, (2016).
  • [11] Komatsu, T., Mezö, I. and Szalay, L., “Incomplete Cauchy numbers”, Acta Math. Hungar., 149: 306-323, (2016).
  • [12] Komatsu, T. and Young, P.T., “Generalized Stirling numbers with poly-Bernoulli and poly-Cauchy numbers”, Int. J. Number Theory, 14(05): 1211-1222, (2018).
  • [13] Boyadzhiev, K.N., “Polyexponentials”, available from: http://arxiv.org/pdf/0710.1332v1.pdf.
  • [14] Komatsu, T. and Szalay, L., “Shifted poly-Cauchy numbers”, Lith. Math. J., 54: 166-181, (2014).
  • [15] Rahmani, M., “On p-Cauchy numbers”, Filomat, 30(10): 2731-2742, (2016).
  • [16] Lah, I., “A new kind of numbers and its application in the actuarial mathematics”, Bol. Inst. Actuár. Port., 9: 7-15, (1954).
  • [17] Rahmani, M., “Generalized Stirling transform”, Miskolc Math. Notes, 15: 677-690, (2014).
  • [18] Komatsu, T., “Sums of products of Cauchy numbers, including poly-Cauchy numbers”, J. Discrete Math., 2013: Article ID373927, (2013).
  • [19] Howard, F. T., Nörlund’s number B_n^n, Applications of Fibonacci Numbers, Vol. 5, Kluwer Acad. Publ., Dordrecht, (1993).
  • [20] Zhao, F.Z., “Sums of products of Cauchy numbers”, Discrete Mathematics, 309(12): 3830-3842, (2009).
There are 20 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Mathematics
Authors

Levent Kargın 0000-0001-9596-1960

Project Number FBA-2018-3723.
Publication Date June 1, 2020
Published in Issue Year 2020

Cite

APA Kargın, L. (2020). On Cauchy Numbers and Their Generalizations. Gazi University Journal of Science, 33(2), 456-474. https://doi.org/10.35378/gujs.604550
AMA Kargın L. On Cauchy Numbers and Their Generalizations. Gazi University Journal of Science. June 2020;33(2):456-474. doi:10.35378/gujs.604550
Chicago Kargın, Levent. “On Cauchy Numbers and Their Generalizations”. Gazi University Journal of Science 33, no. 2 (June 2020): 456-74. https://doi.org/10.35378/gujs.604550.
EndNote Kargın L (June 1, 2020) On Cauchy Numbers and Their Generalizations. Gazi University Journal of Science 33 2 456–474.
IEEE L. Kargın, “On Cauchy Numbers and Their Generalizations”, Gazi University Journal of Science, vol. 33, no. 2, pp. 456–474, 2020, doi: 10.35378/gujs.604550.
ISNAD Kargın, Levent. “On Cauchy Numbers and Their Generalizations”. Gazi University Journal of Science 33/2 (June 2020), 456-474. https://doi.org/10.35378/gujs.604550.
JAMA Kargın L. On Cauchy Numbers and Their Generalizations. Gazi University Journal of Science. 2020;33:456–474.
MLA Kargın, Levent. “On Cauchy Numbers and Their Generalizations”. Gazi University Journal of Science, vol. 33, no. 2, 2020, pp. 456-74, doi:10.35378/gujs.604550.
Vancouver Kargın L. On Cauchy Numbers and Their Generalizations. Gazi University Journal of Science. 2020;33(2):456-74.