Research Article
BibTex RIS Cite
Year 2020, , 766 - 777, 01.12.2020
https://doi.org/10.35378/gujs.605118

Abstract

References

  • [1] L. O. Chua, “Memristor-The missing circuit element”, IEEE Trans. Circuit Theory, vol. CT-18, pp. 507-519, Sept. 1971.
  • [2] L. O. Chua, S. M. Kang, “Memristive devices and systems”, Proc. IEEE, vol. 64, 209-223. 1976.
  • [3] D. B. Strukov, G. S. Snider, D. R. Stewart, R. S. Williams, “The missing memristor found”, Nature (London), vol. 453, pp. 80-83, 2008.
  • [4] T. Prodromakis, C. Toumazou, "A review on memristive devices and applications", 17th IEEE International Conference on Electronics, Circuits and Systems, 2010.
  • [5] Y.V. Pershin, J. Martinez-Rincon, M. Di Ventra. "Memory circuit elements: from systems to applications", Journal of Computational and Theoretical Nanoscience vol.8, no.3, pp. 441-448, 2011.
  • [6] Y. V. Pershin, M. Di Ventra, “Memory effects in complex materials and nanoscale systems”, Adv. Phys., vol. 60, pp. 145–227, Apr. 2011.
  • [7] L. Chua, “Resistance switching memories are memristors”, Appl. Phys. A, vol. 102, pp. 765–783, Mar. 2011.
  • [8] R. Marani, G. Gennaro, A. G. Perri, "A Review on Memristor Applications", International Journal of Advances in Engineering & Technology, vol.8, no.3, p. 294, 2015.
  • [9] S. Sangho, K. Kim, S-M. Kang. "Memristor applications for programmable analog ICs.", IEEE Transactions on Nanotechnology, vol.10, no.2, pp. 266-274, 2011.
  • [10] Y. N. Joglekar, S. J. Wolf, “The elusive memrisor: properties of basic electrical circuits”, European Journal of Physics, vol. 30, no. 4, pp. 661675, 2009.
  • [11] Z. Biolek, D. Biolek, V. Biolkova, “SPICE model of memristor with nonlinear dopant drift”, Radio Engineering, vol. 18, no. 2, pp. 210-214, 2009.
  • [12] T. Prodromakis, B. P. Peh, C. Papavassiliou, C. Toumazou, “A Versatile Memristor Model With Nonlinear Dopant Kinetics”, IEEE Transactions on electron devices, vol.58, no.9, pp.3099-3105, 2011.
  • [13] J. Zha, T. Huang, Y. Liu, “A Novel Window Function for Memristor With Application in Programming Analog Circuits”, IEEE TCAS-II, vol. 63, no. 5, pp. 423-427, 2016.
  • [14] Y. Oğuz, F. Gül, H. Eroğlu, “A New Window Function for Memristor Modeling”, 8th International Advanced Technologies Symposium (IATS17), 2017.
  • [15] M. Itoh, L. O. Chua, “Memristor Oscillators”, Int. J. Bifurcation and Chaos, Vol. 18, pp. 3183–3206, 2008.
  • [16] D. Wang, et al. "A PWL model of memristor and its application example", 2009 International Conference on Communications, Circuits and Systems. IEEE, 2009.
  • [17] S. C. Yener, R. Mutlu, H. H. Kuntman, “Analysis of filter characteristics based on PWL Memristor”, Istanbul University-Journal of Electrical & Electronics Engineering, vol.14, no.1, pp.1709-1719, 2014.
  • [18] H. Güler, T. Kaya, “Parça Parça Lineer Memristor Tabanlı Chua Osilatorunun LabVIEW’de Gerçekleştirilmesi”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol.28, no.2, pp. 29-33, 2016.
  • [19] A. Solak, S. Herdem, “A Piece Wise Linear Memristor Model with Switches,” International Journal of Modeling and Optimization, vol. 6, no. 2, pp. 124, 2016.
  • [20] A. Solak, S. Herdem, “Simulink Model for Piece Wise Linear Approximation of Memristor”, International Journal of Applied Mathematics, Electronics and Computers, vol. 4, no. 1, pp. 386-390, 2016.
  • [21] H-M. Carlos, D. Torres-Muñoz. "PWL Window Function for Nonlinear Memristive Systems", 2019 International Conference on Electronics, Communications and Computers (CONIELECOMP). IEEE, 2019.
  • [22] L.O. Chua, S. M. Kang, “Section-wise piecewise-linear functions: Canonical representation, properties, and applications”, Proceedings of the IEEE, vol. 65, pp. 915-929, 1977.

SPICE Model of Current Polarity-Dependent Piecewise Linear Window Function for Memristors

Year 2020, , 766 - 777, 01.12.2020
https://doi.org/10.35378/gujs.605118

Abstract

Memristor and memristive systems are nonlinear systems. It is important to model them accurately. There are different memristor models and most of the models make use of window functions. In literature, there are various window functions. Recently, a piecewise linear (PWL) window function is used to model a memristor and memristive systems. Such a memristor with a PWL window function lacks a SPICE model. Also, in literature, there is current polarity dependent window functions proposed for memristors to model polarity dependent drift speed within the thin-film memristors. In this study, an alternative current-polarity dependent PWL window function is suggested to model a memristor, a different PWL function one for each current polarity is used, its SPICE model is made in LTSpice and also its simulation results are given. Such a model can be used to model the polarity dependent drift speed within the thin-film memristors.

References

  • [1] L. O. Chua, “Memristor-The missing circuit element”, IEEE Trans. Circuit Theory, vol. CT-18, pp. 507-519, Sept. 1971.
  • [2] L. O. Chua, S. M. Kang, “Memristive devices and systems”, Proc. IEEE, vol. 64, 209-223. 1976.
  • [3] D. B. Strukov, G. S. Snider, D. R. Stewart, R. S. Williams, “The missing memristor found”, Nature (London), vol. 453, pp. 80-83, 2008.
  • [4] T. Prodromakis, C. Toumazou, "A review on memristive devices and applications", 17th IEEE International Conference on Electronics, Circuits and Systems, 2010.
  • [5] Y.V. Pershin, J. Martinez-Rincon, M. Di Ventra. "Memory circuit elements: from systems to applications", Journal of Computational and Theoretical Nanoscience vol.8, no.3, pp. 441-448, 2011.
  • [6] Y. V. Pershin, M. Di Ventra, “Memory effects in complex materials and nanoscale systems”, Adv. Phys., vol. 60, pp. 145–227, Apr. 2011.
  • [7] L. Chua, “Resistance switching memories are memristors”, Appl. Phys. A, vol. 102, pp. 765–783, Mar. 2011.
  • [8] R. Marani, G. Gennaro, A. G. Perri, "A Review on Memristor Applications", International Journal of Advances in Engineering & Technology, vol.8, no.3, p. 294, 2015.
  • [9] S. Sangho, K. Kim, S-M. Kang. "Memristor applications for programmable analog ICs.", IEEE Transactions on Nanotechnology, vol.10, no.2, pp. 266-274, 2011.
  • [10] Y. N. Joglekar, S. J. Wolf, “The elusive memrisor: properties of basic electrical circuits”, European Journal of Physics, vol. 30, no. 4, pp. 661675, 2009.
  • [11] Z. Biolek, D. Biolek, V. Biolkova, “SPICE model of memristor with nonlinear dopant drift”, Radio Engineering, vol. 18, no. 2, pp. 210-214, 2009.
  • [12] T. Prodromakis, B. P. Peh, C. Papavassiliou, C. Toumazou, “A Versatile Memristor Model With Nonlinear Dopant Kinetics”, IEEE Transactions on electron devices, vol.58, no.9, pp.3099-3105, 2011.
  • [13] J. Zha, T. Huang, Y. Liu, “A Novel Window Function for Memristor With Application in Programming Analog Circuits”, IEEE TCAS-II, vol. 63, no. 5, pp. 423-427, 2016.
  • [14] Y. Oğuz, F. Gül, H. Eroğlu, “A New Window Function for Memristor Modeling”, 8th International Advanced Technologies Symposium (IATS17), 2017.
  • [15] M. Itoh, L. O. Chua, “Memristor Oscillators”, Int. J. Bifurcation and Chaos, Vol. 18, pp. 3183–3206, 2008.
  • [16] D. Wang, et al. "A PWL model of memristor and its application example", 2009 International Conference on Communications, Circuits and Systems. IEEE, 2009.
  • [17] S. C. Yener, R. Mutlu, H. H. Kuntman, “Analysis of filter characteristics based on PWL Memristor”, Istanbul University-Journal of Electrical & Electronics Engineering, vol.14, no.1, pp.1709-1719, 2014.
  • [18] H. Güler, T. Kaya, “Parça Parça Lineer Memristor Tabanlı Chua Osilatorunun LabVIEW’de Gerçekleştirilmesi”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol.28, no.2, pp. 29-33, 2016.
  • [19] A. Solak, S. Herdem, “A Piece Wise Linear Memristor Model with Switches,” International Journal of Modeling and Optimization, vol. 6, no. 2, pp. 124, 2016.
  • [20] A. Solak, S. Herdem, “Simulink Model for Piece Wise Linear Approximation of Memristor”, International Journal of Applied Mathematics, Electronics and Computers, vol. 4, no. 1, pp. 386-390, 2016.
  • [21] H-M. Carlos, D. Torres-Muñoz. "PWL Window Function for Nonlinear Memristive Systems", 2019 International Conference on Electronics, Communications and Computers (CONIELECOMP). IEEE, 2019.
  • [22] L.O. Chua, S. M. Kang, “Section-wise piecewise-linear functions: Canonical representation, properties, and applications”, Proceedings of the IEEE, vol. 65, pp. 915-929, 1977.
There are 22 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Electrical & Electronics Engineering
Authors

Ertuğrul Karakulak 0000-0001-5937-2114

Reşat Mutlu 0000-0003-0030-7136

Publication Date December 1, 2020
Published in Issue Year 2020

Cite

APA Karakulak, E., & Mutlu, R. (2020). SPICE Model of Current Polarity-Dependent Piecewise Linear Window Function for Memristors. Gazi University Journal of Science, 33(4), 766-777. https://doi.org/10.35378/gujs.605118
AMA Karakulak E, Mutlu R. SPICE Model of Current Polarity-Dependent Piecewise Linear Window Function for Memristors. Gazi University Journal of Science. December 2020;33(4):766-777. doi:10.35378/gujs.605118
Chicago Karakulak, Ertuğrul, and Reşat Mutlu. “SPICE Model of Current Polarity-Dependent Piecewise Linear Window Function for Memristors”. Gazi University Journal of Science 33, no. 4 (December 2020): 766-77. https://doi.org/10.35378/gujs.605118.
EndNote Karakulak E, Mutlu R (December 1, 2020) SPICE Model of Current Polarity-Dependent Piecewise Linear Window Function for Memristors. Gazi University Journal of Science 33 4 766–777.
IEEE E. Karakulak and R. Mutlu, “SPICE Model of Current Polarity-Dependent Piecewise Linear Window Function for Memristors”, Gazi University Journal of Science, vol. 33, no. 4, pp. 766–777, 2020, doi: 10.35378/gujs.605118.
ISNAD Karakulak, Ertuğrul - Mutlu, Reşat. “SPICE Model of Current Polarity-Dependent Piecewise Linear Window Function for Memristors”. Gazi University Journal of Science 33/4 (December 2020), 766-777. https://doi.org/10.35378/gujs.605118.
JAMA Karakulak E, Mutlu R. SPICE Model of Current Polarity-Dependent Piecewise Linear Window Function for Memristors. Gazi University Journal of Science. 2020;33:766–777.
MLA Karakulak, Ertuğrul and Reşat Mutlu. “SPICE Model of Current Polarity-Dependent Piecewise Linear Window Function for Memristors”. Gazi University Journal of Science, vol. 33, no. 4, 2020, pp. 766-77, doi:10.35378/gujs.605118.
Vancouver Karakulak E, Mutlu R. SPICE Model of Current Polarity-Dependent Piecewise Linear Window Function for Memristors. Gazi University Journal of Science. 2020;33(4):766-77.