Research Article
BibTex RIS Cite
Year 2023, , 190 - 206, 01.03.2023
https://doi.org/10.35378/gujs.826149

Abstract

References

  • [1] Abdel-Rahim, N. M., Quaicoe, J. E., “Analysis and design of a multiple feedback loop control strategy for single-phase voltage-source UPS inverters”, Power Electron IEEE Transaction, 11(4): 532–541, (1996).
  • [2] Hao, M., Longyu, C., Zhihong, B., “An active-clamping current-fed push-pull converter for vehicle inverter application and resonance analysis”, IEEE Internatioal Symposium, Industrial Electron, Hangzhou, China , (2012).
  • [3] Deng, H., Oruganti, R., Srinivasan, D., “A simple control method for high-performance UPS inverters through output-impedance reduction”, In IEEE Transactions on Industrial Electronics, 55(2): 888–898, (2008).
  • [4] Chenlei, B., Xinhua, R., Xuehua, W., “Design of grid-connected inverters with LCL filter based on PI regulator and capacitor current feedback active damping”, 2012 IEEE Energy Conversion Congress and Exposition (ECCE), Raleigh, (2012).
  • [5] Komurcugil, H., Altin, N., Ozdemir, S., Sefa, I., “Lyapunov-function and proportional-resonant-based control strategy for single-phase grid connected VSI with LCL filter”, IEEE Transactions on Industrial Electronics, 63(5): 2838–2849, (2016).
  • [6] Tzou, Y.Y., Ou, R.S., Jung, S.L., Chang, M.Y., “High-performance programmable ac power source with low-harmonic distortion using DSP based repetitive control technique”, In IEEE Transactions on Power Electronics, 12(4): 715-725, (1997).
  • [7] Zhang, K., Kang, Y., Xiong, J., Chen, J., “Direct repetitive control of SPWM inverter for UPS purpose”, In IEEE Transaction on Power Electronics, 18(3): 784-792, (2003).
  • [8] Rech, C., Grundling, H., Pinheiro, J. R., “A modified discrete control law for UPS applications”, IEEE 31st Annual Power Electronics Specialists Conference, Conference Proceedings, Galway, Ireland, 3: 1476-1481, (2000).
  • [9] Zhang, X., Wang, Y., Yu, C., Guo, L., Cao, R., “Hysteresis model predictive control for high-power grid-connected inverters with output LCL filter”, In IEEE Transactions on Industrial Electronics, 63(1): 246–256, (2016).
  • [10] Baghaee, HR., Mirsalim, M., Gharehpetian, GB., Talebi, HA., “A decentralized robust mixed H2/H voltage control scheme to improve small/large-signal stability and FRT capability of islanded multi-DER microgrid considering load disturbances”, In IEEE Systems Journal, 12(3): 2610-2621, (2018).
  • [11] Kawamura, A., Chuarayaratip, R., Haneyoshi, T., “Deadbeat control of PWM inverter with modified pulse patterns for uninterruptible power supply”, IEEE Transaction Industrial Electron, 35(2): 295-300, (1988).
  • [12] Hua, C., “Two-level switching pattern deadbeat DSP controlled PWM inverter”, IEEE Transaction Power Electron, 10(3): 310-317, (1995).
  • [13] Kukrer, O., Komurcugil, H., “Deadbeat control method for single-phase UPS inverters with compensation of computation delay”, In IEE Proceedings, Electric Power Applications, 146(1): 123-128, (1999).
  • [14] Pascual, M., Garcera, G., Figueres, E., Gonzalez-Espin, F., “Robust Model-Following Control of Parallel UPS Single-Phase Inverters”, Industrial Electronics IEEE Transactions, 55(8): 2870-2883, (2008).
  • [15] Dahono, PA., Taryana, E., “A new control method for single-phase PWM inverters to realize zero steady-state error and fast response”, In Proceeding of 15th International Conference of Power Electron, Drive System, Singapore, (2003).
  • [16] Woo, YT., Kim, YC., “A digital control of a single-phase UPS inverter for robust ac-voltage tracking”, In Proceeding 30th Annual Conference of IEEE Industrial Electronics Society, IECON 2004, Busan, South Korea, (2004).
  • [17] Utkin, V., Guldner, J., Shi, J., Sliding mode control in electro -mechanical systems, CRC press, Taylor and Francis Group, (2009).
  • [18] Abrishamifar, A., Ahmad, A. A., Mohamadian, M., “Fixed Switching Frequency Sliding Mode Control for Single-Phase Unipolar Inverters”, IEEE Transaction, Power Electron, 27(5): 2507–2514, (2012).
  • [19] Makrini, IE., Rodriguez, C., Lefeber, D., Vanderborght, B., “The Variable Boundary Layer Sliding Mode Control: A Safe and Performant Control for Compliant Joint Manipulators”, IEEE Robotics and Automation Letters, 2(1): 187-192, (2017).
  • [20] Levant, A., “Sliding order and sliding accuracy in sliding mode control”, International Journal of Control, 58: 6, 1247-1263, (1993).
  • [21] Guo, B., Su, M., Sun, Y., Wang, H., Dan, H., Tang, Z., Cheng B., “A Robust Second-Order Sliding Mode Control for Single-Phase Photovoltaic Grid-Connected Voltage Source Inverter”, IEEE Access,7: 53202-53212, (2019).
  • [22] Lu, J., Savaghebi, M., Ghias, A M.Y.M., Hou, X., Guerrero, J., “A Reduced-Order Generalized Proportional Integral Observer-based Resonant Super twisting Sliding Mode Control for Grid- Connected Power Converters” In IEEE Transactions on Industrial Electronics, 68(7): 5897-5908, (2021).
  • [23] Zhang, W., Wang, W., Liu, H., Xu, D.,” A Disturbance Rejection Control Strategy for Droop-Controlled Inverter Based on Super-Twisting Algorithm” IEEE Access, (7): 27037-27046, (2019).
  • [24] Luo, W., Zhao, T., Li, X., Wang, Z., Wu, L., “Adaptive super-twisting sliding mode control of three-phase power rectifiers in active front end applications” IET Control Theory & Applications, 13(10): 1483-1490, (2019).
  • [25] Utkin, V., “Discussion Aspects of High-Order Sliding Mode Control”, IEEE Transactions on Automatic Control, 61(3): 829-833, (2016).
  • [26] Slotine, J., Li, W., Applied Nonlinear Control Prentice-Hall Englewood Cliffs, New Jersey, (1991).

A Sliding-Mode Control with Efficient Chattering Alleviation for Single-Phase Voltage Source Inverters

Year 2023, , 190 - 206, 01.03.2023
https://doi.org/10.35378/gujs.826149

Abstract

This paper presents an adaptive sliding mode control (SMC) method with a variable boundary layer for single-phase voltage source inverters. This strategy offers a very simple sliding function without any derivative term while preserving unique characteristics of the sliding mode control like fast dynamic response and robustness against parameter variations while also possessing the variable boundary layer method to reject the chattering phenomena. Chattering excites the high frequencies in the system and leads to inaccuracy and instability. It is shown that despite the conventinal approches, the proposed variable boundary layer method can both alleviate the chattering and generating the minimum steady state error. Owing to the adaptive nature of the suggested control approach which adjusts the thickness of the boundary layer, the whole mechanism can be controlled successfully under unpredictable parameter variations. The accomplishment of the suggested strategy is investigated by simulations in MATLAB/Simulink. The outcomes are compared with the outcomes obtained without boundary layer, with constant boundary layer and super twisting sliding control methods. The comparison reveals that the proposed control technique outperforms the other control methods for the voltage source inverter. The results demonstrate that while the conventional, SMC with constant boundary layer and super twisting sliding control (STSMC) methods have 50% ,8% and 10% chattering over their control input respectively, the proposed method has less than 3% chattering over the control input.

References

  • [1] Abdel-Rahim, N. M., Quaicoe, J. E., “Analysis and design of a multiple feedback loop control strategy for single-phase voltage-source UPS inverters”, Power Electron IEEE Transaction, 11(4): 532–541, (1996).
  • [2] Hao, M., Longyu, C., Zhihong, B., “An active-clamping current-fed push-pull converter for vehicle inverter application and resonance analysis”, IEEE Internatioal Symposium, Industrial Electron, Hangzhou, China , (2012).
  • [3] Deng, H., Oruganti, R., Srinivasan, D., “A simple control method for high-performance UPS inverters through output-impedance reduction”, In IEEE Transactions on Industrial Electronics, 55(2): 888–898, (2008).
  • [4] Chenlei, B., Xinhua, R., Xuehua, W., “Design of grid-connected inverters with LCL filter based on PI regulator and capacitor current feedback active damping”, 2012 IEEE Energy Conversion Congress and Exposition (ECCE), Raleigh, (2012).
  • [5] Komurcugil, H., Altin, N., Ozdemir, S., Sefa, I., “Lyapunov-function and proportional-resonant-based control strategy for single-phase grid connected VSI with LCL filter”, IEEE Transactions on Industrial Electronics, 63(5): 2838–2849, (2016).
  • [6] Tzou, Y.Y., Ou, R.S., Jung, S.L., Chang, M.Y., “High-performance programmable ac power source with low-harmonic distortion using DSP based repetitive control technique”, In IEEE Transactions on Power Electronics, 12(4): 715-725, (1997).
  • [7] Zhang, K., Kang, Y., Xiong, J., Chen, J., “Direct repetitive control of SPWM inverter for UPS purpose”, In IEEE Transaction on Power Electronics, 18(3): 784-792, (2003).
  • [8] Rech, C., Grundling, H., Pinheiro, J. R., “A modified discrete control law for UPS applications”, IEEE 31st Annual Power Electronics Specialists Conference, Conference Proceedings, Galway, Ireland, 3: 1476-1481, (2000).
  • [9] Zhang, X., Wang, Y., Yu, C., Guo, L., Cao, R., “Hysteresis model predictive control for high-power grid-connected inverters with output LCL filter”, In IEEE Transactions on Industrial Electronics, 63(1): 246–256, (2016).
  • [10] Baghaee, HR., Mirsalim, M., Gharehpetian, GB., Talebi, HA., “A decentralized robust mixed H2/H voltage control scheme to improve small/large-signal stability and FRT capability of islanded multi-DER microgrid considering load disturbances”, In IEEE Systems Journal, 12(3): 2610-2621, (2018).
  • [11] Kawamura, A., Chuarayaratip, R., Haneyoshi, T., “Deadbeat control of PWM inverter with modified pulse patterns for uninterruptible power supply”, IEEE Transaction Industrial Electron, 35(2): 295-300, (1988).
  • [12] Hua, C., “Two-level switching pattern deadbeat DSP controlled PWM inverter”, IEEE Transaction Power Electron, 10(3): 310-317, (1995).
  • [13] Kukrer, O., Komurcugil, H., “Deadbeat control method for single-phase UPS inverters with compensation of computation delay”, In IEE Proceedings, Electric Power Applications, 146(1): 123-128, (1999).
  • [14] Pascual, M., Garcera, G., Figueres, E., Gonzalez-Espin, F., “Robust Model-Following Control of Parallel UPS Single-Phase Inverters”, Industrial Electronics IEEE Transactions, 55(8): 2870-2883, (2008).
  • [15] Dahono, PA., Taryana, E., “A new control method for single-phase PWM inverters to realize zero steady-state error and fast response”, In Proceeding of 15th International Conference of Power Electron, Drive System, Singapore, (2003).
  • [16] Woo, YT., Kim, YC., “A digital control of a single-phase UPS inverter for robust ac-voltage tracking”, In Proceeding 30th Annual Conference of IEEE Industrial Electronics Society, IECON 2004, Busan, South Korea, (2004).
  • [17] Utkin, V., Guldner, J., Shi, J., Sliding mode control in electro -mechanical systems, CRC press, Taylor and Francis Group, (2009).
  • [18] Abrishamifar, A., Ahmad, A. A., Mohamadian, M., “Fixed Switching Frequency Sliding Mode Control for Single-Phase Unipolar Inverters”, IEEE Transaction, Power Electron, 27(5): 2507–2514, (2012).
  • [19] Makrini, IE., Rodriguez, C., Lefeber, D., Vanderborght, B., “The Variable Boundary Layer Sliding Mode Control: A Safe and Performant Control for Compliant Joint Manipulators”, IEEE Robotics and Automation Letters, 2(1): 187-192, (2017).
  • [20] Levant, A., “Sliding order and sliding accuracy in sliding mode control”, International Journal of Control, 58: 6, 1247-1263, (1993).
  • [21] Guo, B., Su, M., Sun, Y., Wang, H., Dan, H., Tang, Z., Cheng B., “A Robust Second-Order Sliding Mode Control for Single-Phase Photovoltaic Grid-Connected Voltage Source Inverter”, IEEE Access,7: 53202-53212, (2019).
  • [22] Lu, J., Savaghebi, M., Ghias, A M.Y.M., Hou, X., Guerrero, J., “A Reduced-Order Generalized Proportional Integral Observer-based Resonant Super twisting Sliding Mode Control for Grid- Connected Power Converters” In IEEE Transactions on Industrial Electronics, 68(7): 5897-5908, (2021).
  • [23] Zhang, W., Wang, W., Liu, H., Xu, D.,” A Disturbance Rejection Control Strategy for Droop-Controlled Inverter Based on Super-Twisting Algorithm” IEEE Access, (7): 27037-27046, (2019).
  • [24] Luo, W., Zhao, T., Li, X., Wang, Z., Wu, L., “Adaptive super-twisting sliding mode control of three-phase power rectifiers in active front end applications” IET Control Theory & Applications, 13(10): 1483-1490, (2019).
  • [25] Utkin, V., “Discussion Aspects of High-Order Sliding Mode Control”, IEEE Transactions on Automatic Control, 61(3): 829-833, (2016).
  • [26] Slotine, J., Li, W., Applied Nonlinear Control Prentice-Hall Englewood Cliffs, New Jersey, (1991).
There are 26 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Electrical & Electronics Engineering
Authors

Farzaneh Bagheri 0000-0002-7335-0277

Hasan Komurcugil 0000-0003-4728-6416

Publication Date March 1, 2023
Published in Issue Year 2023

Cite

APA Bagheri, F., & Komurcugil, H. (2023). A Sliding-Mode Control with Efficient Chattering Alleviation for Single-Phase Voltage Source Inverters. Gazi University Journal of Science, 36(1), 190-206. https://doi.org/10.35378/gujs.826149
AMA Bagheri F, Komurcugil H. A Sliding-Mode Control with Efficient Chattering Alleviation for Single-Phase Voltage Source Inverters. Gazi University Journal of Science. March 2023;36(1):190-206. doi:10.35378/gujs.826149
Chicago Bagheri, Farzaneh, and Hasan Komurcugil. “A Sliding-Mode Control With Efficient Chattering Alleviation for Single-Phase Voltage Source Inverters”. Gazi University Journal of Science 36, no. 1 (March 2023): 190-206. https://doi.org/10.35378/gujs.826149.
EndNote Bagheri F, Komurcugil H (March 1, 2023) A Sliding-Mode Control with Efficient Chattering Alleviation for Single-Phase Voltage Source Inverters. Gazi University Journal of Science 36 1 190–206.
IEEE F. Bagheri and H. Komurcugil, “A Sliding-Mode Control with Efficient Chattering Alleviation for Single-Phase Voltage Source Inverters”, Gazi University Journal of Science, vol. 36, no. 1, pp. 190–206, 2023, doi: 10.35378/gujs.826149.
ISNAD Bagheri, Farzaneh - Komurcugil, Hasan. “A Sliding-Mode Control With Efficient Chattering Alleviation for Single-Phase Voltage Source Inverters”. Gazi University Journal of Science 36/1 (March 2023), 190-206. https://doi.org/10.35378/gujs.826149.
JAMA Bagheri F, Komurcugil H. A Sliding-Mode Control with Efficient Chattering Alleviation for Single-Phase Voltage Source Inverters. Gazi University Journal of Science. 2023;36:190–206.
MLA Bagheri, Farzaneh and Hasan Komurcugil. “A Sliding-Mode Control With Efficient Chattering Alleviation for Single-Phase Voltage Source Inverters”. Gazi University Journal of Science, vol. 36, no. 1, 2023, pp. 190-06, doi:10.35378/gujs.826149.
Vancouver Bagheri F, Komurcugil H. A Sliding-Mode Control with Efficient Chattering Alleviation for Single-Phase Voltage Source Inverters. Gazi University Journal of Science. 2023;36(1):190-206.