Research Article
BibTex RIS Cite
Year 2022, , 167 - 182, 01.03.2022
https://doi.org/10.35378/gujs.829340

Abstract

References

  • Ashby, M. F., “The properties of foams and lattices”, Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences, 364 (1838): 15–30, (2006).
  • Rehme, O., and Emmelmann, C., “Rapid manufacturing of lattice structures with selective laser melting”, In Proceedings of SPIE 6107: 61070K. 1–61070K. 12., (2006).
  • Sing, S.L., Yeong, W.Y., Wiria, F.E. and Tay, B.Y., “Characterization of titanium lattice structures fabricated by selective laser melting using an adapted compressive test method”, Exp Mechan, 56: 735-748, (2015).
  • Loh, L.-E., Chua, C.K., Yeong, W.Y., Song, J., Mapar, M., Sing, S.L., Liu, Z.H. and Zhang, D. Q., “Numerical investigation and an effective modelling on the selective laser melting (SLM) process with aluminium alloy 6061”, International Journal of Heat and Mass Transfer, 80: 288-300, (2015).
  • Tanlak, N., De Lange, D. F., and Van, Paepegem W., “Numerical prediction of the printable density range of lattice structures for additive manufacturing”, Materials & Design, 133: 549-558, (2017).
  • Tanlak, N., “Printable density limits of additively-manufactured structured foams”, In Additive Manufacturing Conference Turkey, (2019).
  • Xu, Y., Zhang, D., Zhou, Y., Wang, W., Cao, X., “Study on topology optimization design, manufacturability, and performance evaluation of Ti-6Al-4V porous structures fabricated by selective laser melting (SLM)”, Materials, 10, (2017).
  • Hedayati, R., Ahmadi, S.M., Lietaert, K., Pouran, B., Li, Y., Weinans, H., Rans, C.D., Zadpoor, A.A., “Isolated and modulated effects of topology and material type on the mechanical properties of additively manufactured porous biomaterials”, Journal of the Mechanical Behavior of Biomedical Materials, 79: 254-263, (2018).
  • Kucewicz, M., Baranowski, P, Małachowski, J, Popławski, A. and Płatek, P., “Modelling, and characterization of 3d printed cellular structures”, Materials & Design, 142: 177-189, (2018).
  • Van Bael, S., Kerckhofs, G., Moesen, M., Pyka, G., Schrooten, J. and Kruth, J.P., “Micro-ct-based improvement of geometrical and mechanical controllability of selective laser melted ti6al4v porous structures”, Materials Science and Engineering: A, 528(24): 7423-7431, (2011).
  • Hao, L., Raymont, D., Yan, C., Hussein, A. and Young, P., “Design and additive manufacturing of cellular lattice structures. Innovative Developments in Virtual and Physical Prototyping”, pp 249-254, (2011).
  • Drescher, P, Reimann, T. and Seitz, H., “Investigation of powder removal of net-structured titanium parts made from electron beam melting”, International Journal of Rapid Manufacturing, Vol. 4(2), (2014).
  • Yan, X., Li, Q., Yin, S., Chen, Z., Jenkins, R., Chen, C., Wang, J., Ma, W., Bolot, R., Lupoi, R., Ren, Z., Liao, H. and Liu, M., “Mechanical and in vitro study of an isotropic ti6al4v lattice structure fabricated using selective laser melting”, Journal of Alloys and Compounds, 782: 209-223, (2019).
  • Kim, T. B., Yue, S., Zhang, Z., Jones, E., Jones, J. R. and Lee, P. D., “Additive manufactured porous titanium structures: Through-process quantification of pore and strut networks”, Journal of Materials Processing Technology, 214 (11): 2706-2715, (2014).
  • Abele, E., Stoffregen, H. A., Klimkeit, K., Hoche, H. and Oechsner, M., “Optimisation of process parameters for lattice structures”, Rapid Prototyping Journal, 21(1): 117–127, (2015).
  • Leary, M., Mazur, M., Elambasseril, J., McMillan, M., Chirent, T., Suna, Y., Qian, M., Eastona, M. and Brandt, M., “Selective laser melting (SLM) of AlSi12Mg lattice structures”, Materials and Design, 98: 344-357, (2016).
  • Mazur, M., Leary, M., Sun, S., Vcelka, M., Shidid, D. and Brandt, M., “Deformation and failure behaviour of Ti-6Al-4V lattice structures manufactured by selective laser melting (SLM)”, Int J Adv Manuf Technol, 84: 1391-1411, (2016).
  • Wang, D., Wu, S., Fu, F., Mai, S., Yang, Y., Liu, Y., and Song, C., “Mechanisms and characteristics of spatter generation in {SLM} processing and its effect on the properties”, Materials & Design, 117: 121-130, (2017).
  • Weißmann, V., Drescher, P., Bader, R., Seitz, H., Hansmann, H. and Laufer, N., “Comparison of single Ti6Al4V struts made using selective laser melting and electron beam melting subject to part orientation”, Metals, 7(3): 91-113, (2017).
  • Fox, J. C., Moylan, S. P. and Lane, B. M., “Effect of process parameters on the surface roughness of overhanging structures in laser powder bed fusion additive manufacturing”, Procedia CIRP, 45: 131-134, (2016).
  • Spierings, A., Herres, N. and Levy, G., “Influence of the particle size distribution on surface quality and mechanical properties in am steel parts”, Rapid Prototyping Journal, 17(3): 195-202, (2011).
  • Zhang, S., Wei, Q. and Cheng, L., “Effects of scan line spacing on pore characteristic and mechanical properties of porous Ti6Al4V implants fabricated by selective laser melting”, Materials Design, 63: 185-93, (2014).
  • Yan, C, Hao, L., Hussein A., Young P., and Raymont D., “Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting”, Materials & Design, 55: 533-541, (2014).
  • Hazlehurst, K., Wang, C.J. and Stanford, M., “Evaluation of the stiffness characteristics of square pore cocrmo cellular structures manufactured using laser melting technology for potential orthopaedic applications”, Materials Design, 51: 949-955, (2013).
  • Tsopanos, S., Mines, R. A. W., McKown, S., Shen, Y., Cantwell, W. J., Brooks, W. and Sutcliffe, C. J., “The influence of processing parameters on the mechanical properties of selectively laser melted stainless steel microlattice structures”, J Manuf Sci Eng, 132 (041011), (2010).
  • Vyatskikh, A., Delalande, S., Kudo, A., Zhang, X., Portela, C. M. and Greer, J. R., “Additive manufacturing of 3D nano-architected metals”, Nature Communications, 9, (593), (2018).
  • Pattanayak, D. K., Matsushita, T., Takadama, H., Fukuda, A., Takemoto, M., Fujibayashi, S., Sasaki, K., Nishida, N., Nakamura, T. and Kokubo, T., “Fabrication of bioactive porous Ti metal with structure similar to human cancellous bone by selective laser melting”, Bioceramics Development and Applications, 1: 1-3, (2011).
  • Qiu, C., Yue, S. and Adkins, N.J.E., “Influence of processing conditions on strut structure and compressive properties of cellular lattice structures fabricated by selective laser melting”, Mat Sci Eng A, 628: 188–97, (2015).
  • Vrána, R., Koutný, D., Paloušek, D., Pantelejev, L., Jaroš, J., Zikmund, T. and Kaiser, J., “Selective laser melting strategy for fabrication of thin struts usable in lattice structures”, Materials, 11 (9: 1763), (2018).
  • Sing, S. L., Wiria, F. E. and Yeong, W. Y.,” Selective laser melting of lattice structures: A statistical approach to manufacturability and mechanical behavior”, Robotics and Computer-Integrated Manufacturing, 49: 170-180, (2018).
  • Salem, H., Carter, L.N., Attallah, M.M. and Salem, H.G., “Influence of processing parameters on internal porosity and types of defects formed in Ti6Al4V lattice structure fabricated by selective laser melting”, Materials Science and Engineering: A, 767, 11 (2019).
  • Yan, C., Hao, L., Hussein, A., Bubb, S. L., Young, P.,and Raymont, D., “Evaluation of light-weight AlSi10Mg periodic cellular lattice structures fabricated via direct metal laser sintering”, Journal of Materials Processing Technology, 214 (4): 856-864, (2014).
  • Gülcan, O, Konukseven, E. I. and Temel, S., “Katmanlı imalatla üretilen Ti6Al4V parçalarının mekanik özellikleri”, Makina Tasarım ve Imalat Dergisi, 15: 27-37, (2017).
  • Yan, C., Hao, L., Hussein, A. and Raymont, D., “Evaluations of cellular lattice structures manufactured using selective laser melting”, International Journal of Machine Tools & Manufacture, 62: 32-38, (2012).
  • Wauthle, R., Vrancken, B., Beynaerts, B., Jorissen, K., Schrooten, J., Kruth, J.P., Van Humbeeck J., “Effects of build orientation and heat treatment on the microstructure and mechanical properties of selective laser melted Ti6Al4V lattice structures”, Additive Manufacturing, 5: 77-84, (2015).
  • Weißmann, V., Drescher, P., Seitz, H., Hansmann, H., Bader, R., Seyfarth, A., Klinder, A. and Jonitz-Heincke, A., “Effects of build orientation on surface morphology and bone cell activity of additively manufactured Ti6Al4V specimens”, Materials, 11 (915.), (2018).
  • Vayre, B., Vignat, F. and Villeneuve F., “Identification on some design key parameters for additive manufacturing: Application on electron beam melting”, Procedia CIRP, 7: 264-269, (2013).
  • Chen, W., Watts Seth, Jackson, J. A., Smith, W. L., Tortorelli, D. A. and Spadaccini, C. M., “Stiff isotropic lattices beyond the maxwell criterion”, Science Advances, 5(9), (2019).
  • J. C. Maxwell F.R.S. L., “On the calculation of the equilibrium and stiffness of frames”. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 27 (182): 294-299, (1864).
  • Calladine, C.R., “Theory of shell structures, chapter Streching and bending in cylindrical and nearly-cylindrical shells”, p. 238–240. Cambridge University Press., (1983).
  • Pellegrino, S. and Calladine C.R., “Matrix analysis of statically and kinematically indeterminate frameworks”, International Journal of Solids and Structures, 22 (4): 409-428, (1986).
  • Köhnen, P., Haase, C., Bültmann, J., Ziegler, S., Schleifenbaum, J. H., Bleck, W., “Mechanical properties and deformation behavior of additively manufactured lattice structures of stainless steel”, Materials & Design, 145: 205-217, (2018).
  • Maskery, I., Sturm, L., Aremu, A. O., Panesar, A., Williams, C. B., Tuck, C. J., Wildman, R. D., Ashcroft, I. A., Hague, R.J.M., “Insights into the mechanical properties of several triply periodic minimal surface lattice structures made by polymer additive manufacturing”, Polymer, 152: 62-71, 2018.
  • Abaqus CAE User’s Guide, Providence, RI, USA. (2018).
  • Triantaphyllou, A., Giusca, C. L, Macaulay, G. D., Roerig, F., Hoebel, M., Leach, R. K., Tomita, B., Milne, K. A., "Surface texture measurement for additive manufacturing”. Surface Topography: Metrology and Properties, 3 (2): 024002, (2015).
  • Suard, M., Martin, G., Lhuissier, P., Dendievel, R., Vignat, F., Blandin, J. J., Villeneuve, F., “Mechanical equivalent diameter of single struts for the stiffness prediction of lattice structures produced by electron beam melting”, Additive Manufacturing, 8: 124-131, (2015).

Computer-Aided Prediction for Printable Density Limits of Additively-Manufactured Direction-Wise Stretch-Dominated Strut-Based Lattice Structures

Year 2022, , 167 - 182, 01.03.2022
https://doi.org/10.35378/gujs.829340

Abstract

When topologies of the bending-dominated lattices are strengthened by introducing a strut being oriented in one cubic direction, the lattice structures may behave like a stretch-dominated one in that direction. Because of this potential, they are of interest to engineers demanding anisotropic advanced materials. But their manufacturability is as important as the mechanical advantage they can present. To manufacture these lattice structures, additive manufacturing methods like powder bed fusion are widely used. Yet, there are limits for printing these structures. In this study, taking machine precision and powder lump size relative to the unit-cell size as main factors, the printable density range was found for the first-time for the lattice structures strengthened by adding a strut in one direction. Results indicated that the printable relative density range shifted upward in comparison to lattices which were not strengthened.

References

  • Ashby, M. F., “The properties of foams and lattices”, Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences, 364 (1838): 15–30, (2006).
  • Rehme, O., and Emmelmann, C., “Rapid manufacturing of lattice structures with selective laser melting”, In Proceedings of SPIE 6107: 61070K. 1–61070K. 12., (2006).
  • Sing, S.L., Yeong, W.Y., Wiria, F.E. and Tay, B.Y., “Characterization of titanium lattice structures fabricated by selective laser melting using an adapted compressive test method”, Exp Mechan, 56: 735-748, (2015).
  • Loh, L.-E., Chua, C.K., Yeong, W.Y., Song, J., Mapar, M., Sing, S.L., Liu, Z.H. and Zhang, D. Q., “Numerical investigation and an effective modelling on the selective laser melting (SLM) process with aluminium alloy 6061”, International Journal of Heat and Mass Transfer, 80: 288-300, (2015).
  • Tanlak, N., De Lange, D. F., and Van, Paepegem W., “Numerical prediction of the printable density range of lattice structures for additive manufacturing”, Materials & Design, 133: 549-558, (2017).
  • Tanlak, N., “Printable density limits of additively-manufactured structured foams”, In Additive Manufacturing Conference Turkey, (2019).
  • Xu, Y., Zhang, D., Zhou, Y., Wang, W., Cao, X., “Study on topology optimization design, manufacturability, and performance evaluation of Ti-6Al-4V porous structures fabricated by selective laser melting (SLM)”, Materials, 10, (2017).
  • Hedayati, R., Ahmadi, S.M., Lietaert, K., Pouran, B., Li, Y., Weinans, H., Rans, C.D., Zadpoor, A.A., “Isolated and modulated effects of topology and material type on the mechanical properties of additively manufactured porous biomaterials”, Journal of the Mechanical Behavior of Biomedical Materials, 79: 254-263, (2018).
  • Kucewicz, M., Baranowski, P, Małachowski, J, Popławski, A. and Płatek, P., “Modelling, and characterization of 3d printed cellular structures”, Materials & Design, 142: 177-189, (2018).
  • Van Bael, S., Kerckhofs, G., Moesen, M., Pyka, G., Schrooten, J. and Kruth, J.P., “Micro-ct-based improvement of geometrical and mechanical controllability of selective laser melted ti6al4v porous structures”, Materials Science and Engineering: A, 528(24): 7423-7431, (2011).
  • Hao, L., Raymont, D., Yan, C., Hussein, A. and Young, P., “Design and additive manufacturing of cellular lattice structures. Innovative Developments in Virtual and Physical Prototyping”, pp 249-254, (2011).
  • Drescher, P, Reimann, T. and Seitz, H., “Investigation of powder removal of net-structured titanium parts made from electron beam melting”, International Journal of Rapid Manufacturing, Vol. 4(2), (2014).
  • Yan, X., Li, Q., Yin, S., Chen, Z., Jenkins, R., Chen, C., Wang, J., Ma, W., Bolot, R., Lupoi, R., Ren, Z., Liao, H. and Liu, M., “Mechanical and in vitro study of an isotropic ti6al4v lattice structure fabricated using selective laser melting”, Journal of Alloys and Compounds, 782: 209-223, (2019).
  • Kim, T. B., Yue, S., Zhang, Z., Jones, E., Jones, J. R. and Lee, P. D., “Additive manufactured porous titanium structures: Through-process quantification of pore and strut networks”, Journal of Materials Processing Technology, 214 (11): 2706-2715, (2014).
  • Abele, E., Stoffregen, H. A., Klimkeit, K., Hoche, H. and Oechsner, M., “Optimisation of process parameters for lattice structures”, Rapid Prototyping Journal, 21(1): 117–127, (2015).
  • Leary, M., Mazur, M., Elambasseril, J., McMillan, M., Chirent, T., Suna, Y., Qian, M., Eastona, M. and Brandt, M., “Selective laser melting (SLM) of AlSi12Mg lattice structures”, Materials and Design, 98: 344-357, (2016).
  • Mazur, M., Leary, M., Sun, S., Vcelka, M., Shidid, D. and Brandt, M., “Deformation and failure behaviour of Ti-6Al-4V lattice structures manufactured by selective laser melting (SLM)”, Int J Adv Manuf Technol, 84: 1391-1411, (2016).
  • Wang, D., Wu, S., Fu, F., Mai, S., Yang, Y., Liu, Y., and Song, C., “Mechanisms and characteristics of spatter generation in {SLM} processing and its effect on the properties”, Materials & Design, 117: 121-130, (2017).
  • Weißmann, V., Drescher, P., Bader, R., Seitz, H., Hansmann, H. and Laufer, N., “Comparison of single Ti6Al4V struts made using selective laser melting and electron beam melting subject to part orientation”, Metals, 7(3): 91-113, (2017).
  • Fox, J. C., Moylan, S. P. and Lane, B. M., “Effect of process parameters on the surface roughness of overhanging structures in laser powder bed fusion additive manufacturing”, Procedia CIRP, 45: 131-134, (2016).
  • Spierings, A., Herres, N. and Levy, G., “Influence of the particle size distribution on surface quality and mechanical properties in am steel parts”, Rapid Prototyping Journal, 17(3): 195-202, (2011).
  • Zhang, S., Wei, Q. and Cheng, L., “Effects of scan line spacing on pore characteristic and mechanical properties of porous Ti6Al4V implants fabricated by selective laser melting”, Materials Design, 63: 185-93, (2014).
  • Yan, C, Hao, L., Hussein A., Young P., and Raymont D., “Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting”, Materials & Design, 55: 533-541, (2014).
  • Hazlehurst, K., Wang, C.J. and Stanford, M., “Evaluation of the stiffness characteristics of square pore cocrmo cellular structures manufactured using laser melting technology for potential orthopaedic applications”, Materials Design, 51: 949-955, (2013).
  • Tsopanos, S., Mines, R. A. W., McKown, S., Shen, Y., Cantwell, W. J., Brooks, W. and Sutcliffe, C. J., “The influence of processing parameters on the mechanical properties of selectively laser melted stainless steel microlattice structures”, J Manuf Sci Eng, 132 (041011), (2010).
  • Vyatskikh, A., Delalande, S., Kudo, A., Zhang, X., Portela, C. M. and Greer, J. R., “Additive manufacturing of 3D nano-architected metals”, Nature Communications, 9, (593), (2018).
  • Pattanayak, D. K., Matsushita, T., Takadama, H., Fukuda, A., Takemoto, M., Fujibayashi, S., Sasaki, K., Nishida, N., Nakamura, T. and Kokubo, T., “Fabrication of bioactive porous Ti metal with structure similar to human cancellous bone by selective laser melting”, Bioceramics Development and Applications, 1: 1-3, (2011).
  • Qiu, C., Yue, S. and Adkins, N.J.E., “Influence of processing conditions on strut structure and compressive properties of cellular lattice structures fabricated by selective laser melting”, Mat Sci Eng A, 628: 188–97, (2015).
  • Vrána, R., Koutný, D., Paloušek, D., Pantelejev, L., Jaroš, J., Zikmund, T. and Kaiser, J., “Selective laser melting strategy for fabrication of thin struts usable in lattice structures”, Materials, 11 (9: 1763), (2018).
  • Sing, S. L., Wiria, F. E. and Yeong, W. Y.,” Selective laser melting of lattice structures: A statistical approach to manufacturability and mechanical behavior”, Robotics and Computer-Integrated Manufacturing, 49: 170-180, (2018).
  • Salem, H., Carter, L.N., Attallah, M.M. and Salem, H.G., “Influence of processing parameters on internal porosity and types of defects formed in Ti6Al4V lattice structure fabricated by selective laser melting”, Materials Science and Engineering: A, 767, 11 (2019).
  • Yan, C., Hao, L., Hussein, A., Bubb, S. L., Young, P.,and Raymont, D., “Evaluation of light-weight AlSi10Mg periodic cellular lattice structures fabricated via direct metal laser sintering”, Journal of Materials Processing Technology, 214 (4): 856-864, (2014).
  • Gülcan, O, Konukseven, E. I. and Temel, S., “Katmanlı imalatla üretilen Ti6Al4V parçalarının mekanik özellikleri”, Makina Tasarım ve Imalat Dergisi, 15: 27-37, (2017).
  • Yan, C., Hao, L., Hussein, A. and Raymont, D., “Evaluations of cellular lattice structures manufactured using selective laser melting”, International Journal of Machine Tools & Manufacture, 62: 32-38, (2012).
  • Wauthle, R., Vrancken, B., Beynaerts, B., Jorissen, K., Schrooten, J., Kruth, J.P., Van Humbeeck J., “Effects of build orientation and heat treatment on the microstructure and mechanical properties of selective laser melted Ti6Al4V lattice structures”, Additive Manufacturing, 5: 77-84, (2015).
  • Weißmann, V., Drescher, P., Seitz, H., Hansmann, H., Bader, R., Seyfarth, A., Klinder, A. and Jonitz-Heincke, A., “Effects of build orientation on surface morphology and bone cell activity of additively manufactured Ti6Al4V specimens”, Materials, 11 (915.), (2018).
  • Vayre, B., Vignat, F. and Villeneuve F., “Identification on some design key parameters for additive manufacturing: Application on electron beam melting”, Procedia CIRP, 7: 264-269, (2013).
  • Chen, W., Watts Seth, Jackson, J. A., Smith, W. L., Tortorelli, D. A. and Spadaccini, C. M., “Stiff isotropic lattices beyond the maxwell criterion”, Science Advances, 5(9), (2019).
  • J. C. Maxwell F.R.S. L., “On the calculation of the equilibrium and stiffness of frames”. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 27 (182): 294-299, (1864).
  • Calladine, C.R., “Theory of shell structures, chapter Streching and bending in cylindrical and nearly-cylindrical shells”, p. 238–240. Cambridge University Press., (1983).
  • Pellegrino, S. and Calladine C.R., “Matrix analysis of statically and kinematically indeterminate frameworks”, International Journal of Solids and Structures, 22 (4): 409-428, (1986).
  • Köhnen, P., Haase, C., Bültmann, J., Ziegler, S., Schleifenbaum, J. H., Bleck, W., “Mechanical properties and deformation behavior of additively manufactured lattice structures of stainless steel”, Materials & Design, 145: 205-217, (2018).
  • Maskery, I., Sturm, L., Aremu, A. O., Panesar, A., Williams, C. B., Tuck, C. J., Wildman, R. D., Ashcroft, I. A., Hague, R.J.M., “Insights into the mechanical properties of several triply periodic minimal surface lattice structures made by polymer additive manufacturing”, Polymer, 152: 62-71, 2018.
  • Abaqus CAE User’s Guide, Providence, RI, USA. (2018).
  • Triantaphyllou, A., Giusca, C. L, Macaulay, G. D., Roerig, F., Hoebel, M., Leach, R. K., Tomita, B., Milne, K. A., "Surface texture measurement for additive manufacturing”. Surface Topography: Metrology and Properties, 3 (2): 024002, (2015).
  • Suard, M., Martin, G., Lhuissier, P., Dendievel, R., Vignat, F., Blandin, J. J., Villeneuve, F., “Mechanical equivalent diameter of single struts for the stiffness prediction of lattice structures produced by electron beam melting”, Additive Manufacturing, 8: 124-131, (2015).
There are 46 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Mechanical Engineering
Authors

Niyazi Tanlak 0000-0002-0581-9555

Publication Date March 1, 2022
Published in Issue Year 2022

Cite

APA Tanlak, N. (2022). Computer-Aided Prediction for Printable Density Limits of Additively-Manufactured Direction-Wise Stretch-Dominated Strut-Based Lattice Structures. Gazi University Journal of Science, 35(1), 167-182. https://doi.org/10.35378/gujs.829340
AMA Tanlak N. Computer-Aided Prediction for Printable Density Limits of Additively-Manufactured Direction-Wise Stretch-Dominated Strut-Based Lattice Structures. Gazi University Journal of Science. March 2022;35(1):167-182. doi:10.35378/gujs.829340
Chicago Tanlak, Niyazi. “Computer-Aided Prediction for Printable Density Limits of Additively-Manufactured Direction-Wise Stretch-Dominated Strut-Based Lattice Structures”. Gazi University Journal of Science 35, no. 1 (March 2022): 167-82. https://doi.org/10.35378/gujs.829340.
EndNote Tanlak N (March 1, 2022) Computer-Aided Prediction for Printable Density Limits of Additively-Manufactured Direction-Wise Stretch-Dominated Strut-Based Lattice Structures. Gazi University Journal of Science 35 1 167–182.
IEEE N. Tanlak, “Computer-Aided Prediction for Printable Density Limits of Additively-Manufactured Direction-Wise Stretch-Dominated Strut-Based Lattice Structures”, Gazi University Journal of Science, vol. 35, no. 1, pp. 167–182, 2022, doi: 10.35378/gujs.829340.
ISNAD Tanlak, Niyazi. “Computer-Aided Prediction for Printable Density Limits of Additively-Manufactured Direction-Wise Stretch-Dominated Strut-Based Lattice Structures”. Gazi University Journal of Science 35/1 (March 2022), 167-182. https://doi.org/10.35378/gujs.829340.
JAMA Tanlak N. Computer-Aided Prediction for Printable Density Limits of Additively-Manufactured Direction-Wise Stretch-Dominated Strut-Based Lattice Structures. Gazi University Journal of Science. 2022;35:167–182.
MLA Tanlak, Niyazi. “Computer-Aided Prediction for Printable Density Limits of Additively-Manufactured Direction-Wise Stretch-Dominated Strut-Based Lattice Structures”. Gazi University Journal of Science, vol. 35, no. 1, 2022, pp. 167-82, doi:10.35378/gujs.829340.
Vancouver Tanlak N. Computer-Aided Prediction for Printable Density Limits of Additively-Manufactured Direction-Wise Stretch-Dominated Strut-Based Lattice Structures. Gazi University Journal of Science. 2022;35(1):167-82.