Research Article
BibTex RIS Cite

On the Hankel Determinant of m-fold Symmetric Bi-Univalent Functions Using a New Operator

Year 2023, , 349 - 360, 01.03.2023
https://doi.org/10.35378/gujs.958309

Abstract

In this article, we aim to describe a new operator J_(s,a,μ)^(δ,λ) via convolution. Moreover, we aim to present a new subclass C_Σm (τ;β) related to m-fold symmetric bi-univalent functions in the open unit disk Θ={z∈C∶|z| ˂ 1 }. Finally, an estimate related to the Hankel determinant for functions in C_Σm (τ;β) are given. 

References

  • [1] Duren, P. L., “Univalent Functions”, Springer - Verlag, New York, (1983). [2] Srivastava, H. M., Mishra, A. K., Gochhayat, P., “Certain subclasses of analytic and bi-univalent functions”, Applied Mathematics Letters, 23(10): 1188–1192, (2010).
  • [3] Atshan, W. G., Yalçın, S. Hadi, R. A., “Coefficient estimates for special subclasses of k-fold symmetric bi-univalent functions”, Mathematics for Applications, 9: 83-90, (2020).
  • [4] Brannan, D. A., Clunie, J. G., “Aspects of contemporary complex analysis”, Proceedings of the NATO Advanced Study Institute Held at University of Durham, New York: Academic Press, (1979).
  • [5] Brannan, D. A., Taha, T. S., “On some classes of bi-univalent functions”, Studia Universitatis Babeş-Bolyai Mathematica, 31(2): 70-77, (1986).
  • [6] Çağlar, M., Deniz, E., “Initial coefficients for a subclass of bi-univalent functions defined by Salagean differential operator”, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 66 (1), 85-91, (2017).
  • [7] Kazımoğlu, S., Deniz, E., “Fekete-Szegö problem for generalized bi-subordinate functions of complex order”, Hacettepe Journal of Mathematics and Statistics, 49(5): 1695-1705, (2020).
  • [8] Lewin, M., “On a coefficient problem for bi-univalent functions”, Proceding of the American Mathematical Society, 18: 63-68, (1967).
  • [9] Netanyahau, E., “The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in | z |< 1”, Archive for Rotional Mechanic and Analysis, 32(2): 100-112, (1969).
  • [10] Yalçın, S., Atshan, W. G., Hassan, H. Z., “Coefficients assessment for certain subclasses of bi-univalent functions related with quasi-subordination”, Publications De Ľ Institut Mathematique, Nouvelle seŕie, 108(122): 155-162, (2020).
  • [11] Aldweby, H., Darus, M., “Some subordination results on q-analogue of Ruscheweyh differential operator”, Abstract and Applied Analysis, 2014: 1-6, (2014).
  • [12] Komatu, Y., “On analytic prolongation of family of integral operators”, Mathematica (Cluj), 32(55): 141-145, (1990).
  • [13] Atshan, W. G., Badawi, E. I., “On sandwich theorems for certain univalent function defined by a new operator”, Journal of Al-Qadisiyah for Computer Science and Mathematics, 11(2): 72-80, (2019). [14] Koepf, W., “Coefficient of symmetric functions of bounded boundary rotations”, Proceding of the American Mathematical Society, 105: 324–329, (1989).
  • [15] Pommerenke, Ch., “Univalent Functions”, Vandenhoeck and Ruprecht, Gottingen, (1975).
  • [16] Srivastava, H. M., Gaboury, S., Ghanim, F., “Coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions”, Acta Universitatis Apulensis, 41: 153-164, (2015).
  • [17] Noonan, J. W., Thomas, D. K., “On the second Hankel determinant of areally mean p-valent functions”, Transactions of the American Mathematical Society, 223(2): 337–346, (1976).
  • [18] Fekete, M., Szegӧ, G., “Eine bemerkung uber ungerade schlichte funktionen”, Journal of London Mathematical Society, 2: 85-89, (1933). [19] Altınkaya, Ş., Yalçın, S., “Second Hankel determinant for a general subclass of bi-univalent functions”, TWMS Journal of Pure and Applied Mathematics, 7(1): 98-104, (2015).
  • [20] Çağlar, M., Deniz, E., Srivastava, H. M. “Second Hankel determinant for certain subclasses of bi-univalent functions”, Turkish Journal of Mathematics, 41 (3), 694-706, (2017).
  • [21] Deniz, E., Çağlar, M., Orhan, H., “Second hankel determinant for bi-starlike and biconvex functions of order β”, Applied Mathematics and Computation, 271, 301-307, (2015).
  • [22] Hayami, T., Owa, S., “Generalized Hankel determinant for certain classes”, International Journal of Mathematical Analysis, 52(4): 2473–2585, (2010).
  • [23] Yavuz, T., “Second Hankel determinant for analytic functions defined by Ruscheweyh derivative”, International Journal of Analysis and Applications, 8(1): 63-68, (2015).
  • [24] Grenander, U., Szegö, G., “Toeplitz forms and their applications”, California Monographs in Mathematical Sciences, Univ. California Press, Berkeley, (1958).
Year 2023, , 349 - 360, 01.03.2023
https://doi.org/10.35378/gujs.958309

Abstract

References

  • [1] Duren, P. L., “Univalent Functions”, Springer - Verlag, New York, (1983). [2] Srivastava, H. M., Mishra, A. K., Gochhayat, P., “Certain subclasses of analytic and bi-univalent functions”, Applied Mathematics Letters, 23(10): 1188–1192, (2010).
  • [3] Atshan, W. G., Yalçın, S. Hadi, R. A., “Coefficient estimates for special subclasses of k-fold symmetric bi-univalent functions”, Mathematics for Applications, 9: 83-90, (2020).
  • [4] Brannan, D. A., Clunie, J. G., “Aspects of contemporary complex analysis”, Proceedings of the NATO Advanced Study Institute Held at University of Durham, New York: Academic Press, (1979).
  • [5] Brannan, D. A., Taha, T. S., “On some classes of bi-univalent functions”, Studia Universitatis Babeş-Bolyai Mathematica, 31(2): 70-77, (1986).
  • [6] Çağlar, M., Deniz, E., “Initial coefficients for a subclass of bi-univalent functions defined by Salagean differential operator”, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 66 (1), 85-91, (2017).
  • [7] Kazımoğlu, S., Deniz, E., “Fekete-Szegö problem for generalized bi-subordinate functions of complex order”, Hacettepe Journal of Mathematics and Statistics, 49(5): 1695-1705, (2020).
  • [8] Lewin, M., “On a coefficient problem for bi-univalent functions”, Proceding of the American Mathematical Society, 18: 63-68, (1967).
  • [9] Netanyahau, E., “The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in | z |< 1”, Archive for Rotional Mechanic and Analysis, 32(2): 100-112, (1969).
  • [10] Yalçın, S., Atshan, W. G., Hassan, H. Z., “Coefficients assessment for certain subclasses of bi-univalent functions related with quasi-subordination”, Publications De Ľ Institut Mathematique, Nouvelle seŕie, 108(122): 155-162, (2020).
  • [11] Aldweby, H., Darus, M., “Some subordination results on q-analogue of Ruscheweyh differential operator”, Abstract and Applied Analysis, 2014: 1-6, (2014).
  • [12] Komatu, Y., “On analytic prolongation of family of integral operators”, Mathematica (Cluj), 32(55): 141-145, (1990).
  • [13] Atshan, W. G., Badawi, E. I., “On sandwich theorems for certain univalent function defined by a new operator”, Journal of Al-Qadisiyah for Computer Science and Mathematics, 11(2): 72-80, (2019). [14] Koepf, W., “Coefficient of symmetric functions of bounded boundary rotations”, Proceding of the American Mathematical Society, 105: 324–329, (1989).
  • [15] Pommerenke, Ch., “Univalent Functions”, Vandenhoeck and Ruprecht, Gottingen, (1975).
  • [16] Srivastava, H. M., Gaboury, S., Ghanim, F., “Coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions”, Acta Universitatis Apulensis, 41: 153-164, (2015).
  • [17] Noonan, J. W., Thomas, D. K., “On the second Hankel determinant of areally mean p-valent functions”, Transactions of the American Mathematical Society, 223(2): 337–346, (1976).
  • [18] Fekete, M., Szegӧ, G., “Eine bemerkung uber ungerade schlichte funktionen”, Journal of London Mathematical Society, 2: 85-89, (1933). [19] Altınkaya, Ş., Yalçın, S., “Second Hankel determinant for a general subclass of bi-univalent functions”, TWMS Journal of Pure and Applied Mathematics, 7(1): 98-104, (2015).
  • [20] Çağlar, M., Deniz, E., Srivastava, H. M. “Second Hankel determinant for certain subclasses of bi-univalent functions”, Turkish Journal of Mathematics, 41 (3), 694-706, (2017).
  • [21] Deniz, E., Çağlar, M., Orhan, H., “Second hankel determinant for bi-starlike and biconvex functions of order β”, Applied Mathematics and Computation, 271, 301-307, (2015).
  • [22] Hayami, T., Owa, S., “Generalized Hankel determinant for certain classes”, International Journal of Mathematical Analysis, 52(4): 2473–2585, (2010).
  • [23] Yavuz, T., “Second Hankel determinant for analytic functions defined by Ruscheweyh derivative”, International Journal of Analysis and Applications, 8(1): 63-68, (2015).
  • [24] Grenander, U., Szegö, G., “Toeplitz forms and their applications”, California Monographs in Mathematical Sciences, Univ. California Press, Berkeley, (1958).
There are 21 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Mathematics
Authors

Waggas Galıb 0000-0002-7033-8993

Reaam Abd Al-sajjad This is me 0000-0002-7033-8993

Şahsene Altınkaya 0000-0002-7950-8450

Publication Date March 1, 2023
Published in Issue Year 2023

Cite

APA Galıb, W., Al-sajjad, R. A., & Altınkaya, Ş. (2023). On the Hankel Determinant of m-fold Symmetric Bi-Univalent Functions Using a New Operator. Gazi University Journal of Science, 36(1), 349-360. https://doi.org/10.35378/gujs.958309
AMA Galıb W, Al-sajjad RA, Altınkaya Ş. On the Hankel Determinant of m-fold Symmetric Bi-Univalent Functions Using a New Operator. Gazi University Journal of Science. March 2023;36(1):349-360. doi:10.35378/gujs.958309
Chicago Galıb, Waggas, Reaam Abd Al-sajjad, and Şahsene Altınkaya. “On the Hankel Determinant of M-Fold Symmetric Bi-Univalent Functions Using a New Operator”. Gazi University Journal of Science 36, no. 1 (March 2023): 349-60. https://doi.org/10.35378/gujs.958309.
EndNote Galıb W, Al-sajjad RA, Altınkaya Ş (March 1, 2023) On the Hankel Determinant of m-fold Symmetric Bi-Univalent Functions Using a New Operator. Gazi University Journal of Science 36 1 349–360.
IEEE W. Galıb, R. A. Al-sajjad, and Ş. Altınkaya, “On the Hankel Determinant of m-fold Symmetric Bi-Univalent Functions Using a New Operator”, Gazi University Journal of Science, vol. 36, no. 1, pp. 349–360, 2023, doi: 10.35378/gujs.958309.
ISNAD Galıb, Waggas et al. “On the Hankel Determinant of M-Fold Symmetric Bi-Univalent Functions Using a New Operator”. Gazi University Journal of Science 36/1 (March 2023), 349-360. https://doi.org/10.35378/gujs.958309.
JAMA Galıb W, Al-sajjad RA, Altınkaya Ş. On the Hankel Determinant of m-fold Symmetric Bi-Univalent Functions Using a New Operator. Gazi University Journal of Science. 2023;36:349–360.
MLA Galıb, Waggas et al. “On the Hankel Determinant of M-Fold Symmetric Bi-Univalent Functions Using a New Operator”. Gazi University Journal of Science, vol. 36, no. 1, 2023, pp. 349-60, doi:10.35378/gujs.958309.
Vancouver Galıb W, Al-sajjad RA, Altınkaya Ş. On the Hankel Determinant of m-fold Symmetric Bi-Univalent Functions Using a New Operator. Gazi University Journal of Science. 2023;36(1):349-60.