AN HYBRID NUMERICAL ALGORITHM WITH ERROR ESTIMATION FOR A CLASS OF FUNCTIONAL INTEGRO-DIFFERENTIAL EQUATIONS
Year 2016,
Volume: 29 Issue: 2, 419 - 434, 21.06.2016
Burcu Gürbüz
,
Mehmet Sezer
Abstract
In this paper, a numerical algorithm based on Laguerre and Taylor
polynomials is applied for solving a class of functional integrodi
erential equations. The considered problem is transfered to a matrix
equation which corresponds to a system of linear algebraic equations
by Hybrid collocation method under the mixed conditions. The
reliability and eciency of the proposed scheme are demonstrated by
some numerical experiments. Also, the approximate solutions are corrected by using the residual correction.
References
- J. Dieudonne, Orthogonal polynomials and applications, Berlin, New York, 1985.
- S. Chandrasekhar. Introduction to the Study of Stellar Structure. Dover, New York, 1967.
- J. Rashidinia, A. Tahmasebi, S. Rahmany, A reliable treatment for nonlinear Volterra integro-differential, J. Inf. Comput. Sci., 9(1) (2014) 003-010.
- Z. Chen, X. Cheng, An ecient algorithm for solving Fredholm integro-differential equations with weakly singular kernels, J. Comput. Appl. Math.
- (2014) http://dx.doi.org/10.1016/j.cam.2013.08.018.
- J G. Pipe, N. R. Zwart,Spiral Trajectory Design: A Flexible Numerical Algorithm and Base Analytical Equations, Magn. Res. Med., 71 (2014) 278-285.
- R. Farnoosh, M. Ebrahimi, Monte Carlo method for solving Fredholm integral
- equations, Appl. Math. Comput. 195(1) (2008) 309-315.
- A.Ghosh, R. Elber H. A. Scheraga, An atomically detailed study of the folding pathways of protein A with the stochastic difference equation, Nat. Academy Sci., 99 (16) (2002) 10394-10398.
- K. Wang, Q. Wang, Taylor collocation method and convergence analysis
- for the Volterra-Fredholm integral equations, J. Comput. Appl. Math. (2014)
- http://dx.doi.org/10.1016/j.cam.2013.09.050.
- A. Ovchinnikov, Dierence integrability conditions for parameterized linear difference and differential equations, Adv. Appl. Math. 53 (2004) 61-71.
- G.A Andrews, R. Askey, Roy R., Special Functions, Cambridge, 2000.
- P.K. Sahu, S. Saha Ray, Numerical solutions for the system of Fredholm
- integral equations of second kind by a new approach involving semiorthogonal B-spline wavelet collocation method, Appl. Math. Comput., 2014.
- S. Sedaghata, Y. Ordokhania, M. Dehghanb, On spectral method for Volterra functional integro-differential equations of neutral type, Numer. Func. Anal.
- Opt., 35 (2014) 223-239.
- S. Mashayekhi, M. Razzaghi, O. Tripak, Solution of the nonlinear mixed Volterra-Fredholm integral equations by hybrid of blockpulse functions and Bernoulli polynomials, The Sci. World J.,
- http://dx.doi.org/10.1155/2014/413623,2014.
- M. Gulsu, Y. Ozturk, M. Sezer, Numerical approach for solving Volterra
- integro-differential equations with piecewise intervals, J. Avdan. Research
- Appl. Math. 4(1) (2012) 23-37.
- M. Gulsu, Y. Ozturk, Numerical approach for the solution of hypersingular
- integro-differential equations, Appl. Math. Comp. 230 (2014) 701-710.
- S. Bayn, Mathematical Methods in Science and Engineering, New Jersey,
- John Willey & Sons, 2006.
- B. Gurbuz, M. Gulsu, M. Sezer, Numerical approach of high-order linear delay
- dierence equations with variable coefficients in terms of Laguerre polynomials,
- Math. Comput. Appl. , 16 (1)(2011) 267-278.
- S. Yuzbas, N. Sahin, A numerical approach for solving linear dierential
- equation systems,Journ. Adv. Res. Sci. Comput. 3(3) (2011) 14-29.
- B. Gurbuz, M. Sezer, Coskun Guler, Laguerre Collocation Method for Solving
- Fredholm Integro-Differential Equations with Functional Arguments, (2014)
- ID:682398, 12.
- A. Akyuz Dascioglu, H. Cerdik Yaslan, The solution of high-order nonlinear
- differential equations by Chebyshev Series, Appl. Math. Comput. 217 (2011)
- -5666.
- S. Yuzbas, E. Gok, M. Sezer, Muntz-Legendre polynomial solutions of linear
- delay fredholm integro-dierential equations and residual correction, Math.
- Comput. Appl. 18(3) (2013) 476-485.
- S. Yuzbas, M. Sezer, An improved Bessel collocation method with a residual
- error function to solve a class of Lane-Emden differential equations, Math.
- Comput. Model. 57(5-6) (2013) 1298-1311.
- M. Turkylmaz, An eective approach for numerical solutions of highorder
- Fredholm integro-dierential equations, Appl. Math. Comput., (2014)
- http://dx.doi.org/10.1016/j.amc.2013.10.079.
- S. Yuzbas, A Bessel Polynomial Approach For Solving General Linear Fredholm
- Integro-Differential- Difference Equations", Int. Journ. Comput. Math.
- (2011) 3093-3111.
- S. Yuzbas, Laguerre approach for solving pantograph-type Volterra integro-differential equations, Appl. Math. Comput. 232 (2014) 1183-1199.
- M. Sezer, M. Gulsu, A new polynomial approach for solving dierence and
- Fredholm integro-difference equations with mixed argument, Appl. Math.
- Compt. 171 (2005) 332-344.
- M. Gulsu, Y. Ozturk, A new collocation method for solution of mixed linear
- integro-differential equations, Appl. Math. Comput. 216 (2010) 2183-2198.
- K. Wang, Q.Wang, Taylor collocation method and convergence analysis for
- the Volterra-Fredholm integral equations, Journ. Comput. Appl. Math. 260
- (2014) 294-300.
- E. H. Doha, D. Baleanu, A. H. Bhrawy, M. A. Abdelkawy, A Jacobi collocation
- method for solving nonlinear burgers-type equations, Hindawi, ID 760542:12,
- (2013).
- S. Alavi, A. Heydari, An Analytic approximate solution of the matrix Riccati
- differential equation arising from the LQ optimal control problems, Journ.
- Adv. Math. 5(3) (2014) 731-738.
- J. P. Dahm, A. Arbor, K. Fidkowski, Error estimation and adaptation
- in hybridized discontinous Galerkin methods, The AIAA, (2014)
- http://arc.aiaa.org/doi/abs/10.2514/6.2014-0078.
Year 2016,
Volume: 29 Issue: 2, 419 - 434, 21.06.2016
Burcu Gürbüz
,
Mehmet Sezer
References
- J. Dieudonne, Orthogonal polynomials and applications, Berlin, New York, 1985.
- S. Chandrasekhar. Introduction to the Study of Stellar Structure. Dover, New York, 1967.
- J. Rashidinia, A. Tahmasebi, S. Rahmany, A reliable treatment for nonlinear Volterra integro-differential, J. Inf. Comput. Sci., 9(1) (2014) 003-010.
- Z. Chen, X. Cheng, An ecient algorithm for solving Fredholm integro-differential equations with weakly singular kernels, J. Comput. Appl. Math.
- (2014) http://dx.doi.org/10.1016/j.cam.2013.08.018.
- J G. Pipe, N. R. Zwart,Spiral Trajectory Design: A Flexible Numerical Algorithm and Base Analytical Equations, Magn. Res. Med., 71 (2014) 278-285.
- R. Farnoosh, M. Ebrahimi, Monte Carlo method for solving Fredholm integral
- equations, Appl. Math. Comput. 195(1) (2008) 309-315.
- A.Ghosh, R. Elber H. A. Scheraga, An atomically detailed study of the folding pathways of protein A with the stochastic difference equation, Nat. Academy Sci., 99 (16) (2002) 10394-10398.
- K. Wang, Q. Wang, Taylor collocation method and convergence analysis
- for the Volterra-Fredholm integral equations, J. Comput. Appl. Math. (2014)
- http://dx.doi.org/10.1016/j.cam.2013.09.050.
- A. Ovchinnikov, Dierence integrability conditions for parameterized linear difference and differential equations, Adv. Appl. Math. 53 (2004) 61-71.
- G.A Andrews, R. Askey, Roy R., Special Functions, Cambridge, 2000.
- P.K. Sahu, S. Saha Ray, Numerical solutions for the system of Fredholm
- integral equations of second kind by a new approach involving semiorthogonal B-spline wavelet collocation method, Appl. Math. Comput., 2014.
- S. Sedaghata, Y. Ordokhania, M. Dehghanb, On spectral method for Volterra functional integro-differential equations of neutral type, Numer. Func. Anal.
- Opt., 35 (2014) 223-239.
- S. Mashayekhi, M. Razzaghi, O. Tripak, Solution of the nonlinear mixed Volterra-Fredholm integral equations by hybrid of blockpulse functions and Bernoulli polynomials, The Sci. World J.,
- http://dx.doi.org/10.1155/2014/413623,2014.
- M. Gulsu, Y. Ozturk, M. Sezer, Numerical approach for solving Volterra
- integro-differential equations with piecewise intervals, J. Avdan. Research
- Appl. Math. 4(1) (2012) 23-37.
- M. Gulsu, Y. Ozturk, Numerical approach for the solution of hypersingular
- integro-differential equations, Appl. Math. Comp. 230 (2014) 701-710.
- S. Bayn, Mathematical Methods in Science and Engineering, New Jersey,
- John Willey & Sons, 2006.
- B. Gurbuz, M. Gulsu, M. Sezer, Numerical approach of high-order linear delay
- dierence equations with variable coefficients in terms of Laguerre polynomials,
- Math. Comput. Appl. , 16 (1)(2011) 267-278.
- S. Yuzbas, N. Sahin, A numerical approach for solving linear dierential
- equation systems,Journ. Adv. Res. Sci. Comput. 3(3) (2011) 14-29.
- B. Gurbuz, M. Sezer, Coskun Guler, Laguerre Collocation Method for Solving
- Fredholm Integro-Differential Equations with Functional Arguments, (2014)
- ID:682398, 12.
- A. Akyuz Dascioglu, H. Cerdik Yaslan, The solution of high-order nonlinear
- differential equations by Chebyshev Series, Appl. Math. Comput. 217 (2011)
- -5666.
- S. Yuzbas, E. Gok, M. Sezer, Muntz-Legendre polynomial solutions of linear
- delay fredholm integro-dierential equations and residual correction, Math.
- Comput. Appl. 18(3) (2013) 476-485.
- S. Yuzbas, M. Sezer, An improved Bessel collocation method with a residual
- error function to solve a class of Lane-Emden differential equations, Math.
- Comput. Model. 57(5-6) (2013) 1298-1311.
- M. Turkylmaz, An eective approach for numerical solutions of highorder
- Fredholm integro-dierential equations, Appl. Math. Comput., (2014)
- http://dx.doi.org/10.1016/j.amc.2013.10.079.
- S. Yuzbas, A Bessel Polynomial Approach For Solving General Linear Fredholm
- Integro-Differential- Difference Equations", Int. Journ. Comput. Math.
- (2011) 3093-3111.
- S. Yuzbas, Laguerre approach for solving pantograph-type Volterra integro-differential equations, Appl. Math. Comput. 232 (2014) 1183-1199.
- M. Sezer, M. Gulsu, A new polynomial approach for solving dierence and
- Fredholm integro-difference equations with mixed argument, Appl. Math.
- Compt. 171 (2005) 332-344.
- M. Gulsu, Y. Ozturk, A new collocation method for solution of mixed linear
- integro-differential equations, Appl. Math. Comput. 216 (2010) 2183-2198.
- K. Wang, Q.Wang, Taylor collocation method and convergence analysis for
- the Volterra-Fredholm integral equations, Journ. Comput. Appl. Math. 260
- (2014) 294-300.
- E. H. Doha, D. Baleanu, A. H. Bhrawy, M. A. Abdelkawy, A Jacobi collocation
- method for solving nonlinear burgers-type equations, Hindawi, ID 760542:12,
- (2013).
- S. Alavi, A. Heydari, An Analytic approximate solution of the matrix Riccati
- differential equation arising from the LQ optimal control problems, Journ.
- Adv. Math. 5(3) (2014) 731-738.
- J. P. Dahm, A. Arbor, K. Fidkowski, Error estimation and adaptation
- in hybridized discontinous Galerkin methods, The AIAA, (2014)
- http://arc.aiaa.org/doi/abs/10.2514/6.2014-0078.