Exponentiated Transmuted Power Function Distribution: Theory & Applications
Year 2018,
Volume: 31 Issue: 2, 660 - 675, 01.06.2018
Rana Usman
,
Muhammad Ahsan Ul Haq
,
Nurbanu Bursa
,
Gamze Özel
Abstract
This
paper introduces a new generalization of Transmuted Power Function distribution
named as Exponentiated Transmuted Power Function distribution with its fundamental
properties. The expressions of failure and survival rate functions on the basis
of their graphs are provided. We compute moments, moment generating function,
quantile function. Then, Rényi entropy is discussed and the expressions of the
order statistics are derived. Parameters
of the proposed distribution are estimated using the maximum likelihood method.
Real lifetime data application shows the flexibility of the proposed
distribution and its better fit as compared to some existing models.
References
- Ahsanullah, M., & Kabir, A. L. (1974). A characterization of the power function distribution. The Canadian Journal of Statistics/La Revue Canadienne de Statistique, 95-98.
Ahsanullah, M. (1989). Estimation of the parameters of a power function distribution by record values. Pakistan Journal of Statistics, 5(2), 189-194.
Ali, M. M., & Woo, J. (2005). Inference on reliability P (Y< X) in a power function distribution. Journal of Statistics and Management Systems, 8(3), 681-686.
Balakrishnan, N., & Nevzorov, V. (2003). A primer on statistical distributions. Hoboken, New Jersey: A John Wiley & Sons: Inc.
Bursa, N., & Ozel, G. (2017). The exponentiated Kumaraswamy-power function distribution. Hacettepe Journal of Mathematics and Statistics, 46(2), 277-292.
Cordeiro, G. M., & dos Santos Brito, R. (2012). The beta power distribution. Brazilian Journal of Probability and Statistics, 26(1), 88-112.
Cox D.R., & Lewis P.A.W. (1966). The Statistical Analysis of Series of Events, Methuen.
- Forbes, C., Evans, M., Hastings, N., & Peacock, B. (2011). Statistical distributions: John Wiley & Sons.
Haq, M., Usman, R., & Fateh, A. (2016a). A study on Kumaraswamy power function distribution. Submitted to Kuwait Journal of Science.
Haq, M. A., Butt, N. S., Usman, R. M., & Fattah, A. A. (2016b). Transmuted power function distribution. Gazi University Journal of Science, 29(1), 177-185.
Johnson, R. A. (1994). Miller and Freund's Probability and Statistics for Engineers: Prentice Hall.
Johnson, N. L., Kotz, S., & Balakrishnan, N. (1995). Continuous univariate distributions, vol. 2 of Wiley series in probability and mathematical statistics: applied probability and statistics: Wiley, New York.
Meniconi, M., & Barry, D. (1996). The power function distribution: A useful and simple distribution to assess electrical component reliability. Microelectronics Reliability, 36(9), 1207-1212.
Merovci, F. (2016). Transmuted rayleigh distribution. Austrian Journal of Statistics, 42(1), 21-31.
Oguntunde, P., & Adejumo, O. (2014). The transmuted inverse exponential distribution. International Journal of Advanced Statistics and Probability, 3(1), 1-7.
Shakeel, M., ul Haq, M. A., Hussain, I., Abdulhamid, A. M., & Faisal, M. (2016). Comparison of two new robust parameter estimation methods for the power function distribution. PloS One, 11(8), 1-11.
Sultan, R., Sultan, H., & Ahmad, S. (2014). Bayesian analysis of power function distribution under double priors. Journal of Statistics Applications & Probability, 3(2), 239.
Tahir, M., Alizadeh, M., Mansoor, M., Cordeiro, G. M., & Zubair, M. (2014). The Weibull-power function distribution with applications. Hacettepe Journal of Mathematics and Statistics.
Zaka, A., & Akhter, A. S. (2013). Methods for estimating the parameters of the power function distribution. Pakistan Journal of Statistics and Operation Research, 9(2), 1-12.
Year 2018,
Volume: 31 Issue: 2, 660 - 675, 01.06.2018
Rana Usman
,
Muhammad Ahsan Ul Haq
,
Nurbanu Bursa
,
Gamze Özel
References
- Ahsanullah, M., & Kabir, A. L. (1974). A characterization of the power function distribution. The Canadian Journal of Statistics/La Revue Canadienne de Statistique, 95-98.
Ahsanullah, M. (1989). Estimation of the parameters of a power function distribution by record values. Pakistan Journal of Statistics, 5(2), 189-194.
Ali, M. M., & Woo, J. (2005). Inference on reliability P (Y< X) in a power function distribution. Journal of Statistics and Management Systems, 8(3), 681-686.
Balakrishnan, N., & Nevzorov, V. (2003). A primer on statistical distributions. Hoboken, New Jersey: A John Wiley & Sons: Inc.
Bursa, N., & Ozel, G. (2017). The exponentiated Kumaraswamy-power function distribution. Hacettepe Journal of Mathematics and Statistics, 46(2), 277-292.
Cordeiro, G. M., & dos Santos Brito, R. (2012). The beta power distribution. Brazilian Journal of Probability and Statistics, 26(1), 88-112.
Cox D.R., & Lewis P.A.W. (1966). The Statistical Analysis of Series of Events, Methuen.
- Forbes, C., Evans, M., Hastings, N., & Peacock, B. (2011). Statistical distributions: John Wiley & Sons.
Haq, M., Usman, R., & Fateh, A. (2016a). A study on Kumaraswamy power function distribution. Submitted to Kuwait Journal of Science.
Haq, M. A., Butt, N. S., Usman, R. M., & Fattah, A. A. (2016b). Transmuted power function distribution. Gazi University Journal of Science, 29(1), 177-185.
Johnson, R. A. (1994). Miller and Freund's Probability and Statistics for Engineers: Prentice Hall.
Johnson, N. L., Kotz, S., & Balakrishnan, N. (1995). Continuous univariate distributions, vol. 2 of Wiley series in probability and mathematical statistics: applied probability and statistics: Wiley, New York.
Meniconi, M., & Barry, D. (1996). The power function distribution: A useful and simple distribution to assess electrical component reliability. Microelectronics Reliability, 36(9), 1207-1212.
Merovci, F. (2016). Transmuted rayleigh distribution. Austrian Journal of Statistics, 42(1), 21-31.
Oguntunde, P., & Adejumo, O. (2014). The transmuted inverse exponential distribution. International Journal of Advanced Statistics and Probability, 3(1), 1-7.
Shakeel, M., ul Haq, M. A., Hussain, I., Abdulhamid, A. M., & Faisal, M. (2016). Comparison of two new robust parameter estimation methods for the power function distribution. PloS One, 11(8), 1-11.
Sultan, R., Sultan, H., & Ahmad, S. (2014). Bayesian analysis of power function distribution under double priors. Journal of Statistics Applications & Probability, 3(2), 239.
Tahir, M., Alizadeh, M., Mansoor, M., Cordeiro, G. M., & Zubair, M. (2014). The Weibull-power function distribution with applications. Hacettepe Journal of Mathematics and Statistics.
Zaka, A., & Akhter, A. S. (2013). Methods for estimating the parameters of the power function distribution. Pakistan Journal of Statistics and Operation Research, 9(2), 1-12.