Research Article
BibTex RIS Cite
Year 2020, Volume: 33 Issue: 2, 510 - 523, 01.06.2020
https://doi.org/10.35378/gujs.524964

Abstract

References

  • [1] Dou, Yi, Lu Sun, Jingzheng Ren, and Liang Dong. "Opportunities and Future Challenges in Hydrogen Economy for Sustainable Development." In Hydrogen Economy, pp. 277-305. 2017.
  • [2] Dickinson, R. R., Battye, D. L., Linton, V. M., & Ashman, P. J. Alternative carriers for remote renewable energy sources using existing CNG infrastructure. International journal of hydrogen energy, 35(3), 1321-1329. 2010
  • [3] Hashimoto, K., Habazaki, H., Yamasaki, M., Meguro, S., Sasaki, T., Katagiri, H., ... & Akiyama, E. Advanced materials for global carbon dioxide recycling. Materials Science and Engineering: A, 304, 88-96. 2001.
  • [4] Gao, J., Liu, Q., Gu, F., Liu, B., Zhong, Z., & Su, F. Recent advances in methanation catalysts for the production of synthetic natural gas. RSC Advances, 5(29), 22759-22776. 2015
  • [5] Cho, Seolhee, et al. "Optimization-based planning of a biomass to hydrogen (B2H2) system using dedicated energy crops and waste biomass." Biomass and Bioenergy 87 (2016): 144-155
  • [6] Tabkhi, F., Azzaro-Pantel, C., Pibouleau, L., & Domenech, S. A mathematical framework for modelling and evaluating natural gas pipeline networks under hydrogen injection. International journal of hydrogen energy, 33(21), 6222-6231 2008.
  • [7] Haeseldonckx, D. Concrete transition issues towards a fully-fledged use of hydrogen as an energy carrier. KU Leuven, Heverlee. 2009
  • [8] Maroufmashat, A., & Fowler, M. Transition of Future Energy System Infrastructure; through Power-to-Gas Pathways. Energies, 10(8), 1089. (2017)
  • [9] Godula-Jopek, A. Hydrogen production: by electrolysis. John Wiley & Sons, 2015
  • [10] Jarvis, Sean M., and Sheila Samsatli. "Technologies and infrastructures underpinning future CO 2 value chains: A comprehensive review and comparative analysis." Renewable and Sustainable Energy Reviews 85 (2018): 46-68
  • [11] Kummamuru, B. V. (2015). WBA Global Bioenergy Statistics 2015. World Bioenergy Association, 2015.
  • [12] FAO (Food and Agriculture Organization). Global Forest Resources Assessment General Report; FAO: Rome, Italy, FRA2010/163, 2010.
  • [13] Nakada, S., Saygin, D., & Gielen, D. Global bioenergy supply and demand projections for the year 2030. Available on https://www. irena.org/remap/IRENA_REmap_2030_Biomass_paper_. (2014).
  • [14] Carriveau, R., & Ting, D. S. K. (Eds.). Methane and Hydrogen for Energy Storage (Vol. 2). IET., 2016.
  • [15] Saba, Sayed M., Martin Müller, Martin Robinius, and Detlef Stolten. "The investment costs of electrolysis–a comparison of cost studies from the past 30 years." International Journal of Hydrogen Energy (2017).
  • [16] Götz, Manuel, Jonathan Lefebvre, Friedemann Mörs, Amy McDaniel Koch, Frank Graf, Siegfried Bajohr, Rainer Reimert, and Thomas Kolb. "Renewable Power-to-Gas: A technological and economic review." Renewable energy 85 (2016): 1371-1390.
  • [17] Hacker, B., P. Gesikiewicz, and T. Smolinka. "Arbeitspaket 1b: Systemoptimierung und Betriebsführung der PEM-Elektrolyse." energie—wasser-praxis (2015).
  • [18] Reytier, M., S. Di Iorio, A. Chatroux, M. Petitjean, J. Cren, M. De Saint Jean, J. Aicart, and J. Mougin. "Stack performances in high temperature steam electrolysis and co-electrolysis." International Journal of Hydrogen Energy 40, no. 35 (2015): 11370-11377.
  • [19] De Saint Jean, Myriam, Pierre Baurens, and Chakib Bouallou. "Parametric study of an efficient renewable power-to-substitute-natural-gas process including high-temperature steam electrolysis." international journal of hydrogen energy 39, no. 30 (2014): 17024-17039.
  • [20] Giglio, Emanuele, Andrea Lanzini, Massimo Santarelli, and Pierluigi Leone. "Synthetic natural gas via integrated high-temperature electrolysis and methanation: Part I—Energy performance." Journal of Energy Storage 1 (2015): 22-37.
  • [21] Götz, Manuel, Jonathan Lefebvre, Friedemann Mörs, Amy McDaniel Koch, Frank Graf, Siegfried Bajohr, Rainer Reimert, and Thomas Kolb. "Renewable Power-to-Gas: A technological and economic review." Renewable energy 85 (2016): 1371-1390.
  • [22] Schiebahn, Sebastian, Thomas Grube, Martin Robinius, Vanessa Tietze, Bhunesh Kumar, and Detlef Stolten. "Power to gas: Technological overview, systems analysis and economic assessment for a case study in Germany." International journal of hydrogen energy 40, no. 12 (2015): 4285-4294.
  • [23] Bensmann, Boris, Richard Hanke-Rauschenbach, Gert Müller-Syring, Marco Henel, and Kai Sundmacher. "Optimal configuration and pressure levels of electrolyzer plants in context of power-to-gas applications." Applied energy 167 (2016): 107-124.
  • [24] Frontera, Patrizia, Anastasia Macario, Marco Ferraro, and PierLuigi Antonucci. "Supported catalysts for CO2 methanation: a review." Catalysts 7, no. 2 (2017): 59.
  • [25] Parra, David, and Martin K. Patel. "Techno-economic implications of the electrolyser technology and size for power-to-gas systems." International Journal of Hydrogen Energy 41, no. 6 (2016): 3748-3761.
  • [26] Kopp, Martin, David Coleman, Christoph Stiller, Klaus Scheffer, Jonas Aichinger, and Birgit Scheppat. "Energiepark Mainz: Technical and economic analysis of the worldwide largest Power-to-Gas plant with PEM electrolysis." International Journal of Hydrogen Energy 42, no. 19 (2017): 13311-13320.
  • [27] Kötter, E., L. Schneider, F. Sehnke, K. Ohnmeiss, and R. Schröer. "Sensitivities of power-to-gas within an optimised energy system." Energy Procedia 73 (2015): 190-199.
  • [28] Jentsch, Mareike, Tobias Trost, and Michael Sterner. "Optimal use of power-to-gas energy storage systems in an 85% renewable energy scenario." Energy Procedia 46 (2014): 254-261.
  • [29] Bailera, Manuel, Pilar Lisbona, and Luis M. Romeo. "Power to gas-oxyfuel boiler hybrid systems." international journal of hydrogen energy 40, no. 32 (2015): 10168-10175.
  • [30] Bailera, Manuel, Pilar Lisbona, Luis M. Romeo, and Sergio Espatolero. "Power to Gas–biomass oxycombustion hybrid system: Energy integration and potential applications." Applied energy 167 (2016): 221-229.
  • [31] Gillessen, Bastian, H. U. Heinrichs, Peter Stenzel, and Jochen Linssen. "Hybridization strategies of power-to-gas systems and battery storage using renewable energy." International Journal of Hydrogen Energy 42, no. 19 (2017): 13554-13567.
  • [32] Kezibri, Nouaamane, and Chakib Bouallou. "Conceptual design and modelling of an industrial scale power to gas-oxy-combustion power plant." International Journal of Hydrogen Energy 42, no. 30 (2017): 19411-19419.
  • [33] Bailera, Manuel, Pilar Lisbona, and Luis M. Romeo. "Power to gas-oxyfuel boiler hybrid systems." international journal of hydrogen energy 40, no. 32 (2015): 10168-10175.

Efficiency Analysis of Synthetic Methane Production in Power-to-Gas Process Employing Solid Oxide Electrolyser

Year 2020, Volume: 33 Issue: 2, 510 - 523, 01.06.2020
https://doi.org/10.35378/gujs.524964

Abstract

The power-to-gas technology is considered to provide the means of storing surplus renewable energy in the form of synthetic natural gas. The study analyses the P2G system with respect to the three main components i.e. electrolysers (especially solid oxide electrolysers that have a higher operating temperature), the methanation reactor and the synthetic methane injection system. Efficiency of the individual components is evaluated with three different configurations employing heat recovery at various sections of the P2G system. The model has been studied in the ANSYS environment. The configurations are finally evaluated for an optimized solution as regards the efficiency of the entire system and the quality of the produced synthetic. 

References

  • [1] Dou, Yi, Lu Sun, Jingzheng Ren, and Liang Dong. "Opportunities and Future Challenges in Hydrogen Economy for Sustainable Development." In Hydrogen Economy, pp. 277-305. 2017.
  • [2] Dickinson, R. R., Battye, D. L., Linton, V. M., & Ashman, P. J. Alternative carriers for remote renewable energy sources using existing CNG infrastructure. International journal of hydrogen energy, 35(3), 1321-1329. 2010
  • [3] Hashimoto, K., Habazaki, H., Yamasaki, M., Meguro, S., Sasaki, T., Katagiri, H., ... & Akiyama, E. Advanced materials for global carbon dioxide recycling. Materials Science and Engineering: A, 304, 88-96. 2001.
  • [4] Gao, J., Liu, Q., Gu, F., Liu, B., Zhong, Z., & Su, F. Recent advances in methanation catalysts for the production of synthetic natural gas. RSC Advances, 5(29), 22759-22776. 2015
  • [5] Cho, Seolhee, et al. "Optimization-based planning of a biomass to hydrogen (B2H2) system using dedicated energy crops and waste biomass." Biomass and Bioenergy 87 (2016): 144-155
  • [6] Tabkhi, F., Azzaro-Pantel, C., Pibouleau, L., & Domenech, S. A mathematical framework for modelling and evaluating natural gas pipeline networks under hydrogen injection. International journal of hydrogen energy, 33(21), 6222-6231 2008.
  • [7] Haeseldonckx, D. Concrete transition issues towards a fully-fledged use of hydrogen as an energy carrier. KU Leuven, Heverlee. 2009
  • [8] Maroufmashat, A., & Fowler, M. Transition of Future Energy System Infrastructure; through Power-to-Gas Pathways. Energies, 10(8), 1089. (2017)
  • [9] Godula-Jopek, A. Hydrogen production: by electrolysis. John Wiley & Sons, 2015
  • [10] Jarvis, Sean M., and Sheila Samsatli. "Technologies and infrastructures underpinning future CO 2 value chains: A comprehensive review and comparative analysis." Renewable and Sustainable Energy Reviews 85 (2018): 46-68
  • [11] Kummamuru, B. V. (2015). WBA Global Bioenergy Statistics 2015. World Bioenergy Association, 2015.
  • [12] FAO (Food and Agriculture Organization). Global Forest Resources Assessment General Report; FAO: Rome, Italy, FRA2010/163, 2010.
  • [13] Nakada, S., Saygin, D., & Gielen, D. Global bioenergy supply and demand projections for the year 2030. Available on https://www. irena.org/remap/IRENA_REmap_2030_Biomass_paper_. (2014).
  • [14] Carriveau, R., & Ting, D. S. K. (Eds.). Methane and Hydrogen for Energy Storage (Vol. 2). IET., 2016.
  • [15] Saba, Sayed M., Martin Müller, Martin Robinius, and Detlef Stolten. "The investment costs of electrolysis–a comparison of cost studies from the past 30 years." International Journal of Hydrogen Energy (2017).
  • [16] Götz, Manuel, Jonathan Lefebvre, Friedemann Mörs, Amy McDaniel Koch, Frank Graf, Siegfried Bajohr, Rainer Reimert, and Thomas Kolb. "Renewable Power-to-Gas: A technological and economic review." Renewable energy 85 (2016): 1371-1390.
  • [17] Hacker, B., P. Gesikiewicz, and T. Smolinka. "Arbeitspaket 1b: Systemoptimierung und Betriebsführung der PEM-Elektrolyse." energie—wasser-praxis (2015).
  • [18] Reytier, M., S. Di Iorio, A. Chatroux, M. Petitjean, J. Cren, M. De Saint Jean, J. Aicart, and J. Mougin. "Stack performances in high temperature steam electrolysis and co-electrolysis." International Journal of Hydrogen Energy 40, no. 35 (2015): 11370-11377.
  • [19] De Saint Jean, Myriam, Pierre Baurens, and Chakib Bouallou. "Parametric study of an efficient renewable power-to-substitute-natural-gas process including high-temperature steam electrolysis." international journal of hydrogen energy 39, no. 30 (2014): 17024-17039.
  • [20] Giglio, Emanuele, Andrea Lanzini, Massimo Santarelli, and Pierluigi Leone. "Synthetic natural gas via integrated high-temperature electrolysis and methanation: Part I—Energy performance." Journal of Energy Storage 1 (2015): 22-37.
  • [21] Götz, Manuel, Jonathan Lefebvre, Friedemann Mörs, Amy McDaniel Koch, Frank Graf, Siegfried Bajohr, Rainer Reimert, and Thomas Kolb. "Renewable Power-to-Gas: A technological and economic review." Renewable energy 85 (2016): 1371-1390.
  • [22] Schiebahn, Sebastian, Thomas Grube, Martin Robinius, Vanessa Tietze, Bhunesh Kumar, and Detlef Stolten. "Power to gas: Technological overview, systems analysis and economic assessment for a case study in Germany." International journal of hydrogen energy 40, no. 12 (2015): 4285-4294.
  • [23] Bensmann, Boris, Richard Hanke-Rauschenbach, Gert Müller-Syring, Marco Henel, and Kai Sundmacher. "Optimal configuration and pressure levels of electrolyzer plants in context of power-to-gas applications." Applied energy 167 (2016): 107-124.
  • [24] Frontera, Patrizia, Anastasia Macario, Marco Ferraro, and PierLuigi Antonucci. "Supported catalysts for CO2 methanation: a review." Catalysts 7, no. 2 (2017): 59.
  • [25] Parra, David, and Martin K. Patel. "Techno-economic implications of the electrolyser technology and size for power-to-gas systems." International Journal of Hydrogen Energy 41, no. 6 (2016): 3748-3761.
  • [26] Kopp, Martin, David Coleman, Christoph Stiller, Klaus Scheffer, Jonas Aichinger, and Birgit Scheppat. "Energiepark Mainz: Technical and economic analysis of the worldwide largest Power-to-Gas plant with PEM electrolysis." International Journal of Hydrogen Energy 42, no. 19 (2017): 13311-13320.
  • [27] Kötter, E., L. Schneider, F. Sehnke, K. Ohnmeiss, and R. Schröer. "Sensitivities of power-to-gas within an optimised energy system." Energy Procedia 73 (2015): 190-199.
  • [28] Jentsch, Mareike, Tobias Trost, and Michael Sterner. "Optimal use of power-to-gas energy storage systems in an 85% renewable energy scenario." Energy Procedia 46 (2014): 254-261.
  • [29] Bailera, Manuel, Pilar Lisbona, and Luis M. Romeo. "Power to gas-oxyfuel boiler hybrid systems." international journal of hydrogen energy 40, no. 32 (2015): 10168-10175.
  • [30] Bailera, Manuel, Pilar Lisbona, Luis M. Romeo, and Sergio Espatolero. "Power to Gas–biomass oxycombustion hybrid system: Energy integration and potential applications." Applied energy 167 (2016): 221-229.
  • [31] Gillessen, Bastian, H. U. Heinrichs, Peter Stenzel, and Jochen Linssen. "Hybridization strategies of power-to-gas systems and battery storage using renewable energy." International Journal of Hydrogen Energy 42, no. 19 (2017): 13554-13567.
  • [32] Kezibri, Nouaamane, and Chakib Bouallou. "Conceptual design and modelling of an industrial scale power to gas-oxy-combustion power plant." International Journal of Hydrogen Energy 42, no. 30 (2017): 19411-19419.
  • [33] Bailera, Manuel, Pilar Lisbona, and Luis M. Romeo. "Power to gas-oxyfuel boiler hybrid systems." international journal of hydrogen energy 40, no. 32 (2015): 10168-10175.
There are 33 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Mechanical Engineering
Authors

İrfan Ahmad Gondal 0000-0001-6013-7656

Publication Date June 1, 2020
Published in Issue Year 2020 Volume: 33 Issue: 2

Cite

APA Gondal, İ. A. (2020). Efficiency Analysis of Synthetic Methane Production in Power-to-Gas Process Employing Solid Oxide Electrolyser. Gazi University Journal of Science, 33(2), 510-523. https://doi.org/10.35378/gujs.524964
AMA Gondal İA. Efficiency Analysis of Synthetic Methane Production in Power-to-Gas Process Employing Solid Oxide Electrolyser. Gazi University Journal of Science. June 2020;33(2):510-523. doi:10.35378/gujs.524964
Chicago Gondal, İrfan Ahmad. “Efficiency Analysis of Synthetic Methane Production in Power-to-Gas Process Employing Solid Oxide Electrolyser”. Gazi University Journal of Science 33, no. 2 (June 2020): 510-23. https://doi.org/10.35378/gujs.524964.
EndNote Gondal İA (June 1, 2020) Efficiency Analysis of Synthetic Methane Production in Power-to-Gas Process Employing Solid Oxide Electrolyser. Gazi University Journal of Science 33 2 510–523.
IEEE İ. A. Gondal, “Efficiency Analysis of Synthetic Methane Production in Power-to-Gas Process Employing Solid Oxide Electrolyser”, Gazi University Journal of Science, vol. 33, no. 2, pp. 510–523, 2020, doi: 10.35378/gujs.524964.
ISNAD Gondal, İrfan Ahmad. “Efficiency Analysis of Synthetic Methane Production in Power-to-Gas Process Employing Solid Oxide Electrolyser”. Gazi University Journal of Science 33/2 (June 2020), 510-523. https://doi.org/10.35378/gujs.524964.
JAMA Gondal İA. Efficiency Analysis of Synthetic Methane Production in Power-to-Gas Process Employing Solid Oxide Electrolyser. Gazi University Journal of Science. 2020;33:510–523.
MLA Gondal, İrfan Ahmad. “Efficiency Analysis of Synthetic Methane Production in Power-to-Gas Process Employing Solid Oxide Electrolyser”. Gazi University Journal of Science, vol. 33, no. 2, 2020, pp. 510-23, doi:10.35378/gujs.524964.
Vancouver Gondal İA. Efficiency Analysis of Synthetic Methane Production in Power-to-Gas Process Employing Solid Oxide Electrolyser. Gazi University Journal of Science. 2020;33(2):510-23.