Research Article
BibTex RIS Cite

Scattering Function and The Resolvent of The Impulsive Boundary Value Problem

Year 2021, Volume: 34 Issue: 4, 1077 - 1087, 01.12.2021
https://doi.org/10.35378/gujs.796894

Abstract

The purpose of this study is to examine the properties of scattering solutions and the scattering function of an impulsive Sturm-Liouville boundary value problem on the semi axis. By using Jost solutions, we obtain the scattering function, asymptotic representation of Jost function and resolvent operator. Finally, we study scattering solutions and scattering function of an unperturbated impulsive equation.

References

  • Referans1: Naimark, M.A., “Investigation of the spectrum and the expansion in eigenfunctions of a non-self adjoint differential operators of the second order on a semi axis”, Amer. Math. Soc. Transl., 16(2):103-193, (1960).
  • Referans2:Levitan, B.M., Sargsjan, I.J., “Sturm-Liouville and Dirac operators”, Kluwer Academic Publishers Group, Dordrecht, (1991). Referans3: Schwartz, J., “Some non-self adjoint operators”, Comm. Pure Appl. Math. 13:609-639, (1960). Referans4: Pavlov, B.S., “On the spectral theoy of non-self adjoint differential operators”, Dokl. Akad. Nauk SSSR., 146:1267-1270, (1962).
  • Referans5: Guseinov, G.S., “On the concept of spectral singularities”, Pramana, J. Phys., 73(3):587-603, (2009).
  • Referans6: Allahverdiev, B.P., Bairamov, E., Ugurlu, E., “Eigenparameter dependent Sturm-Liouville problems in boundary conditions with transmission conditions”, J. Math. Anal. Appl. 401(1):388-396, (2013).
  • Referans7:Bairamov, E., Aygar, Y., Eren B., “Scattering theory of impulsive Sturm-Liouville equations”, Filomat, 31(17):5401-5409, (2017).
  • Referans8: Guseinov, G.S., “Boundary value problems for nonlinear impulsive Hamilton systems”, J. Comput. Appl. Math., 259:780-789, (2014).
  • Referans9:Bairamov, E., Aygar Y., Oznur, G.B., “Scattering properties of eigenparameter-dependent impulsive Sturm-Liouville equations”, Bull. Malays. Math. Sci. Soc. 43:2769-2781, (2020).
  • Referans10: Mukhtarov, F.S., Aydemir, K., Mukhtarov, O.Sh., “Spectral analysis of one boundary value-transmission problem by means of Green’s function”, Electron. J. Math. Anal. Appl. 2:23-30, (2014). Referans11: Milman, V.D., Myshkis, A.D., “On the stability of motion in the presence of impulses”, Sib. Math. J., 1:233-237, (1960).
  • Referans12: Perestyuk, N.A., Plotnikov, V.A., Samoilenko, A.M., Sikripnik, N.V., “Differential equations with impulse effects: Multivaled right-hand sides with discontinuities”, De Gruyter Studies in Mathematics 40, Germany, (2011).
  • Referans13: Perestyuk, N.A., Samoilenko, A.M., Stanzhitsii, “On the existence of periodic solutions of some classes of systems of differential equations with random impulse action” Ukrain. Math. Zh. 53:1061-1079, (2001).
  • Referans14: Samoilenka, A.M., Perestyuk, N.A., “Impulsive differential equations”, World Scientific, Singapore, (1995). Referans15: Ugurlu, E., Bairamov, E., “Spectral analysis of eigenparameter dependent boundary value transmission problems”, J. Math. Anal. Appl. 413(1):482-494, (2014).
Year 2021, Volume: 34 Issue: 4, 1077 - 1087, 01.12.2021
https://doi.org/10.35378/gujs.796894

Abstract

References

  • Referans1: Naimark, M.A., “Investigation of the spectrum and the expansion in eigenfunctions of a non-self adjoint differential operators of the second order on a semi axis”, Amer. Math. Soc. Transl., 16(2):103-193, (1960).
  • Referans2:Levitan, B.M., Sargsjan, I.J., “Sturm-Liouville and Dirac operators”, Kluwer Academic Publishers Group, Dordrecht, (1991). Referans3: Schwartz, J., “Some non-self adjoint operators”, Comm. Pure Appl. Math. 13:609-639, (1960). Referans4: Pavlov, B.S., “On the spectral theoy of non-self adjoint differential operators”, Dokl. Akad. Nauk SSSR., 146:1267-1270, (1962).
  • Referans5: Guseinov, G.S., “On the concept of spectral singularities”, Pramana, J. Phys., 73(3):587-603, (2009).
  • Referans6: Allahverdiev, B.P., Bairamov, E., Ugurlu, E., “Eigenparameter dependent Sturm-Liouville problems in boundary conditions with transmission conditions”, J. Math. Anal. Appl. 401(1):388-396, (2013).
  • Referans7:Bairamov, E., Aygar, Y., Eren B., “Scattering theory of impulsive Sturm-Liouville equations”, Filomat, 31(17):5401-5409, (2017).
  • Referans8: Guseinov, G.S., “Boundary value problems for nonlinear impulsive Hamilton systems”, J. Comput. Appl. Math., 259:780-789, (2014).
  • Referans9:Bairamov, E., Aygar Y., Oznur, G.B., “Scattering properties of eigenparameter-dependent impulsive Sturm-Liouville equations”, Bull. Malays. Math. Sci. Soc. 43:2769-2781, (2020).
  • Referans10: Mukhtarov, F.S., Aydemir, K., Mukhtarov, O.Sh., “Spectral analysis of one boundary value-transmission problem by means of Green’s function”, Electron. J. Math. Anal. Appl. 2:23-30, (2014). Referans11: Milman, V.D., Myshkis, A.D., “On the stability of motion in the presence of impulses”, Sib. Math. J., 1:233-237, (1960).
  • Referans12: Perestyuk, N.A., Plotnikov, V.A., Samoilenko, A.M., Sikripnik, N.V., “Differential equations with impulse effects: Multivaled right-hand sides with discontinuities”, De Gruyter Studies in Mathematics 40, Germany, (2011).
  • Referans13: Perestyuk, N.A., Samoilenko, A.M., Stanzhitsii, “On the existence of periodic solutions of some classes of systems of differential equations with random impulse action” Ukrain. Math. Zh. 53:1061-1079, (2001).
  • Referans14: Samoilenka, A.M., Perestyuk, N.A., “Impulsive differential equations”, World Scientific, Singapore, (1995). Referans15: Ugurlu, E., Bairamov, E., “Spectral analysis of eigenparameter dependent boundary value transmission problems”, J. Math. Anal. Appl. 413(1):482-494, (2014).
There are 11 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Mathematics
Authors

Elgiz Bayram 0000-0003-2075-5016

Güler Başak Öznur 0000-0003-4130-5348

Publication Date December 1, 2021
Published in Issue Year 2021 Volume: 34 Issue: 4

Cite

APA Bayram, E., & Öznur, G. B. (2021). Scattering Function and The Resolvent of The Impulsive Boundary Value Problem. Gazi University Journal of Science, 34(4), 1077-1087. https://doi.org/10.35378/gujs.796894
AMA Bayram E, Öznur GB. Scattering Function and The Resolvent of The Impulsive Boundary Value Problem. Gazi University Journal of Science. December 2021;34(4):1077-1087. doi:10.35378/gujs.796894
Chicago Bayram, Elgiz, and Güler Başak Öznur. “Scattering Function and The Resolvent of The Impulsive Boundary Value Problem”. Gazi University Journal of Science 34, no. 4 (December 2021): 1077-87. https://doi.org/10.35378/gujs.796894.
EndNote Bayram E, Öznur GB (December 1, 2021) Scattering Function and The Resolvent of The Impulsive Boundary Value Problem. Gazi University Journal of Science 34 4 1077–1087.
IEEE E. Bayram and G. B. Öznur, “Scattering Function and The Resolvent of The Impulsive Boundary Value Problem”, Gazi University Journal of Science, vol. 34, no. 4, pp. 1077–1087, 2021, doi: 10.35378/gujs.796894.
ISNAD Bayram, Elgiz - Öznur, Güler Başak. “Scattering Function and The Resolvent of The Impulsive Boundary Value Problem”. Gazi University Journal of Science 34/4 (December 2021), 1077-1087. https://doi.org/10.35378/gujs.796894.
JAMA Bayram E, Öznur GB. Scattering Function and The Resolvent of The Impulsive Boundary Value Problem. Gazi University Journal of Science. 2021;34:1077–1087.
MLA Bayram, Elgiz and Güler Başak Öznur. “Scattering Function and The Resolvent of The Impulsive Boundary Value Problem”. Gazi University Journal of Science, vol. 34, no. 4, 2021, pp. 1077-8, doi:10.35378/gujs.796894.
Vancouver Bayram E, Öznur GB. Scattering Function and The Resolvent of The Impulsive Boundary Value Problem. Gazi University Journal of Science. 2021;34(4):1077-8.