Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, Cilt: 34 Sayı: 4, 1107 - 1126, 01.12.2021
https://doi.org/10.35378/gujs.806591

Öz

Kaynakça

  • [1] Kaya, H., Ekiciler, R., Arslan, K. “CFD analysis of laminar forced convective heat transfer for TiO2/water nanofluid in a semi-circular cross-sectioned micro-channel”, Journal of Thermal Engineering, 5: 123-137 (2019).
  • [2] Kaya, H., Ekiciler, R., Arslan, K. “Entropy generation analysis of forced convection flow in a semi-circular shaped microchannel with TiO2/water nanofluid” Heat Transf Res, 50: 335-348 (2019).
  • [3] Kumar, P. “Numerical investigation of fluid flow and heat transfer in trapezoidal microchannel with groove structure”, Int J Therm Sci, 136: 33-43, (2019).
  • [4] Vinoth, R., Kumar, D. S., “Channel cross section effect on heat transfer performance of oblique finned microchannel heat sink”, Int Commun Heat Mass, 87: 270-276, (2017).
  • [5] Vinoth, R., Kumar, D. S., “Experimental investigation on heat transfer characteristics of an oblique finned microchannel heat sink with different channel cross sections”, Heat Mass Transfer, 54: 3809-3817, (2018).
  • [6] Ohadi, M., Choo, K., Dessiatoun, S., Cetegen, E., “Emerging applications of microchannels. In: Next generation microchannel heat exchangers”, SpringerBriefs in Applied Sciences and Technology, Springer, New York, (2013).
  • [7] Sheikhalipour, T., Abbassi, A., “Numerical analysis of nanofluid flow inside a trapezoidal microchannel different approaches”, Adv Powder Technol. https://doi.org/10.1016/j.apt.2018.04.010, (2018).
  • [8] Sharma, D., Singh, P. P., Garg, H., “Comparative study of rectangular and trapezoidal microchannels using water and liquid metal”, Procedia Engineer, 51: 791-796, (2013).
  • [9] Wu, H. Y., Cheng, P., “An experimental study of convective heat transfer in silicon microchannels with different surface conditions”, Int J Heat Mass Tran, 46: 2547–2556, (2003).
  • [10] Wu, H. Y., Cheng, P., “Friction factors in smooth trapezoidal silicon microchannels with different aspect ratios”, Int J Heat Mass Tran, 46: 2519-2525, (2003).
  • [11] Chein, R., Chuang, J., “Experimental microchannel heat sink performance studies using nanofluids”, Int J Therm Sci, 46: 57–66, (2007).
  • [12] Fani, B., Kalteh, M., Abbassi, A., “Investigating the effect of Brownian motion and viscous dissipation on the nanofluid heat transfer in a trapezoidal microchannel heat sink”, Adv Powder Technol, 26: 83-90, (2015).
  • [13] Li, J., Kleinstreuer, C., “Thermal performance of nanofluid flow in microchannels”, Int J Heat Fluid Fl, 29: 1221–1232, (2008).
  • [14] Wu, X., Wu, H., Cheng, P., “Pressure drop and heat transfer of Al2O3-H2O nanofluids through silicon microchannels”, J Micromech Microeng, 19: 105020, (2009).
  • [15] Li, J., Kleinstreuer, C., “Entropy generation analysis for nanofluid flow in microchannels”, J Heat Trans-T ASME, 132: 122401, (2010).
  • [16] Mohammed, H. A., Gunnasegaran, P., Shuaib, N. H., “Influence of various base nanofluids and substrate materials on heat transfer in trapezoidal microchannel heat sinks”, Int Commun Heat Mass, 38: 194–201, (2011).
  • [17] Singh, P. K., Harikrishna, P. V., Sundararajan, T., Das, S. K., “Experimental and numerical investigation into the heat transfer study of nanofluids in microchannel”, J Heat Trans-T ASME, 133: 121701, (2012).
  • [18] Fani, B., Abbassi, A., Kalteh, M., “Effect of nanoparticles size on thermal performance of nanofluid in a trapezoidal microchannel-heat-sink”, Int Commun Heat Mass, 45: 155–161, (2013).
  • [19] Yang, Y. T., Tsai, K. T., Wang, Y. H., Lin, S. H., “Numerical study of microchannel heat sink performance using nanofluids”, Int Commun Heat Mass, 57: 27-35, (2014).
  • [20] Yang, Y. T., Wang, Y. H., Huang, B. Y., “Numerical optimization for nanofluid flow in microchannels using entropy generation minimization”, Numer Heat Tr A-Appl, 67: 571-588, (2015).
  • [21] Sheikhalipour, T., Abbassi, A., “Numerical investigation of nanofluid heat transfer inside trapezoidal microchannels using a novel dispersion model”, Adv Powder Technol, 27: 1464-1472, (2016).
  • [22] Vinoth, R., Kumar, D. S., “Numerical study of inlet cross-section effect on oblique finned microchannel heat sink”, Therm Sci, 22: 2747-2757, (2018b).
  • [23] Bakhshi, H., Khodabandeh, E., Akbari, O., Toghraie, D., Joshaghani, M., “Investigation of laminar fluid flow and heat transfer of nanofluid in trapezoidal microchannel with different aspect ratios”, Int J Numer Method H, 29: 1680-1698, (2018).
  • [24] Khodabandeh, E., Abbassi, A., “Performance optimization of water-Al2O3 nanofluid flow and heat transfer in trapezoidal cooling microchannel using constructal theory and two phase Eulerian-Lagrangian approach”, Powder Technol, 323: 103-114, (2018).
  • [25] Tran, N., Chang, Y. J., Wang, C. C., “Optimization of thermal performance of multi-nozzle trapezoidal microchannel heat sinks by using nanofluids of A2O3 and TiO2”, Int J Heat Mass Tran, 117: 787-798, (2018).
  • [26] Jaferian, V., Toghraie, D., Pourfattah, F., Akbari, O. A., Talebizadehsardari, P. “Numerical investigation of the effect of water/Al2O3 nanofluid on heat transfer in trapezoidal, sinusoidal and stepped microchannels”, Int J Numer Method H., 30: 2439-2465 (2020).
  • [27] Incropera, F. P., DeWitt, D. P., Bergman, T. L., Lavine, A. S., “Principles of heat and mass transfer”, John Wiley and Sons Inc., Singapore, (2013).
  • [28] Koyuncuoglu, A., Jafari, R., Okutucu-Ozyurt, T., Kulah, H., “Heat transfer and pressure drop experiments on CMOS compatible microchannel heat sinks for monolithic chip cooling applications”, Int J Therm Sci, 56: 77-85, (2012).
  • [29] Kandlikar, S. G., Garimella, S., Li, D., Colin, S., King, M. R., “Heat transfer and fluid flow in minichannels and microchannels”, Elsevier, USA, (2006).
  • [30] Pakdaman, M. F., Akhavan-Behabadi, M. A., Razi, P., “An experimental investigation on thermo-physical properties and overall performance of MWCNT/heat transfer oil nanofluid flow inside vertical helically coiled tubes”, Exp Therm Fluid Sci, 40: 103–111 (2012).
  • [31] Ahmed, H. E., Yusoff, M. Z., Hawlader M. N. A., Ahmed M. I., Salman B. H., Kerbeetf A. Sh., “Turbulent heat transfer and nanofluid flow in a triangular duct with vortex generators”, Int J Heat Mass Tran, 105: 495-504 (2017).
  • [32] Boukerma, K., Kadja, M., “Convective heat transfer of Al2O3 and CuO nanofluids using various mixtures of water-ethylene glycol as base fluids”, Engineering, Technology & Applied Science Research, 7: 1496-1503 (2017).

Flow and Heat Transfer in a Trapezoidal Cross-Sectional Microchannel Heat Sink Using Nanofluid

Yıl 2021, Cilt: 34 Sayı: 4, 1107 - 1126, 01.12.2021
https://doi.org/10.35378/gujs.806591

Öz

In this study, the effects of microchannel number, volume concentration, Reynolds number, and nanofluid type on heat transfer and flow characteristics in the heat sink consisting of trapezoidal microchannels are investigated numerically. Governing equations are solved by assuming three-dimensional, incompressible, steady and laminar flow. The channel material is chosen as copper, and a constant heat flux boundary condition is defined on the upper wall of heat sink. For two different nanofluids, CuO-water and Al2O3-water, investigated parameters are the number of trapezoidal channels (n=3-5) in the heat sink, Reynolds number (Re=200-1500), and volume concentration (=0-4%). Results show that using nanoparticles in base fluid causes to increase both heat transfer coefficient and pressure drop. Heat transfer coefficient increases with increasing number of trapezoidal cross-sectional channel in the heat sink, nanofluid volume concentration and Reynolds number. Pressure drop enhances with enhancing Reynolds number and microchannel number in the heat sink. The nanofluid type and volume concentration do not importantly affect the friction factor. According to the performance index, it is seen that adding CuO nanoparticles in water is convenient, but Al2O3 nanoparticles in water is not appropriate. It is observed that volume concentration for CuO-water nanofluid affects the thermal performance, but volume concentration for Al2O3-water nanofluid does not affect.

Kaynakça

  • [1] Kaya, H., Ekiciler, R., Arslan, K. “CFD analysis of laminar forced convective heat transfer for TiO2/water nanofluid in a semi-circular cross-sectioned micro-channel”, Journal of Thermal Engineering, 5: 123-137 (2019).
  • [2] Kaya, H., Ekiciler, R., Arslan, K. “Entropy generation analysis of forced convection flow in a semi-circular shaped microchannel with TiO2/water nanofluid” Heat Transf Res, 50: 335-348 (2019).
  • [3] Kumar, P. “Numerical investigation of fluid flow and heat transfer in trapezoidal microchannel with groove structure”, Int J Therm Sci, 136: 33-43, (2019).
  • [4] Vinoth, R., Kumar, D. S., “Channel cross section effect on heat transfer performance of oblique finned microchannel heat sink”, Int Commun Heat Mass, 87: 270-276, (2017).
  • [5] Vinoth, R., Kumar, D. S., “Experimental investigation on heat transfer characteristics of an oblique finned microchannel heat sink with different channel cross sections”, Heat Mass Transfer, 54: 3809-3817, (2018).
  • [6] Ohadi, M., Choo, K., Dessiatoun, S., Cetegen, E., “Emerging applications of microchannels. In: Next generation microchannel heat exchangers”, SpringerBriefs in Applied Sciences and Technology, Springer, New York, (2013).
  • [7] Sheikhalipour, T., Abbassi, A., “Numerical analysis of nanofluid flow inside a trapezoidal microchannel different approaches”, Adv Powder Technol. https://doi.org/10.1016/j.apt.2018.04.010, (2018).
  • [8] Sharma, D., Singh, P. P., Garg, H., “Comparative study of rectangular and trapezoidal microchannels using water and liquid metal”, Procedia Engineer, 51: 791-796, (2013).
  • [9] Wu, H. Y., Cheng, P., “An experimental study of convective heat transfer in silicon microchannels with different surface conditions”, Int J Heat Mass Tran, 46: 2547–2556, (2003).
  • [10] Wu, H. Y., Cheng, P., “Friction factors in smooth trapezoidal silicon microchannels with different aspect ratios”, Int J Heat Mass Tran, 46: 2519-2525, (2003).
  • [11] Chein, R., Chuang, J., “Experimental microchannel heat sink performance studies using nanofluids”, Int J Therm Sci, 46: 57–66, (2007).
  • [12] Fani, B., Kalteh, M., Abbassi, A., “Investigating the effect of Brownian motion and viscous dissipation on the nanofluid heat transfer in a trapezoidal microchannel heat sink”, Adv Powder Technol, 26: 83-90, (2015).
  • [13] Li, J., Kleinstreuer, C., “Thermal performance of nanofluid flow in microchannels”, Int J Heat Fluid Fl, 29: 1221–1232, (2008).
  • [14] Wu, X., Wu, H., Cheng, P., “Pressure drop and heat transfer of Al2O3-H2O nanofluids through silicon microchannels”, J Micromech Microeng, 19: 105020, (2009).
  • [15] Li, J., Kleinstreuer, C., “Entropy generation analysis for nanofluid flow in microchannels”, J Heat Trans-T ASME, 132: 122401, (2010).
  • [16] Mohammed, H. A., Gunnasegaran, P., Shuaib, N. H., “Influence of various base nanofluids and substrate materials on heat transfer in trapezoidal microchannel heat sinks”, Int Commun Heat Mass, 38: 194–201, (2011).
  • [17] Singh, P. K., Harikrishna, P. V., Sundararajan, T., Das, S. K., “Experimental and numerical investigation into the heat transfer study of nanofluids in microchannel”, J Heat Trans-T ASME, 133: 121701, (2012).
  • [18] Fani, B., Abbassi, A., Kalteh, M., “Effect of nanoparticles size on thermal performance of nanofluid in a trapezoidal microchannel-heat-sink”, Int Commun Heat Mass, 45: 155–161, (2013).
  • [19] Yang, Y. T., Tsai, K. T., Wang, Y. H., Lin, S. H., “Numerical study of microchannel heat sink performance using nanofluids”, Int Commun Heat Mass, 57: 27-35, (2014).
  • [20] Yang, Y. T., Wang, Y. H., Huang, B. Y., “Numerical optimization for nanofluid flow in microchannels using entropy generation minimization”, Numer Heat Tr A-Appl, 67: 571-588, (2015).
  • [21] Sheikhalipour, T., Abbassi, A., “Numerical investigation of nanofluid heat transfer inside trapezoidal microchannels using a novel dispersion model”, Adv Powder Technol, 27: 1464-1472, (2016).
  • [22] Vinoth, R., Kumar, D. S., “Numerical study of inlet cross-section effect on oblique finned microchannel heat sink”, Therm Sci, 22: 2747-2757, (2018b).
  • [23] Bakhshi, H., Khodabandeh, E., Akbari, O., Toghraie, D., Joshaghani, M., “Investigation of laminar fluid flow and heat transfer of nanofluid in trapezoidal microchannel with different aspect ratios”, Int J Numer Method H, 29: 1680-1698, (2018).
  • [24] Khodabandeh, E., Abbassi, A., “Performance optimization of water-Al2O3 nanofluid flow and heat transfer in trapezoidal cooling microchannel using constructal theory and two phase Eulerian-Lagrangian approach”, Powder Technol, 323: 103-114, (2018).
  • [25] Tran, N., Chang, Y. J., Wang, C. C., “Optimization of thermal performance of multi-nozzle trapezoidal microchannel heat sinks by using nanofluids of A2O3 and TiO2”, Int J Heat Mass Tran, 117: 787-798, (2018).
  • [26] Jaferian, V., Toghraie, D., Pourfattah, F., Akbari, O. A., Talebizadehsardari, P. “Numerical investigation of the effect of water/Al2O3 nanofluid on heat transfer in trapezoidal, sinusoidal and stepped microchannels”, Int J Numer Method H., 30: 2439-2465 (2020).
  • [27] Incropera, F. P., DeWitt, D. P., Bergman, T. L., Lavine, A. S., “Principles of heat and mass transfer”, John Wiley and Sons Inc., Singapore, (2013).
  • [28] Koyuncuoglu, A., Jafari, R., Okutucu-Ozyurt, T., Kulah, H., “Heat transfer and pressure drop experiments on CMOS compatible microchannel heat sinks for monolithic chip cooling applications”, Int J Therm Sci, 56: 77-85, (2012).
  • [29] Kandlikar, S. G., Garimella, S., Li, D., Colin, S., King, M. R., “Heat transfer and fluid flow in minichannels and microchannels”, Elsevier, USA, (2006).
  • [30] Pakdaman, M. F., Akhavan-Behabadi, M. A., Razi, P., “An experimental investigation on thermo-physical properties and overall performance of MWCNT/heat transfer oil nanofluid flow inside vertical helically coiled tubes”, Exp Therm Fluid Sci, 40: 103–111 (2012).
  • [31] Ahmed, H. E., Yusoff, M. Z., Hawlader M. N. A., Ahmed M. I., Salman B. H., Kerbeetf A. Sh., “Turbulent heat transfer and nanofluid flow in a triangular duct with vortex generators”, Int J Heat Mass Tran, 105: 495-504 (2017).
  • [32] Boukerma, K., Kadja, M., “Convective heat transfer of Al2O3 and CuO nanofluids using various mixtures of water-ethylene glycol as base fluids”, Engineering, Technology & Applied Science Research, 7: 1496-1503 (2017).
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Mechanical Engineering
Yazarlar

Faraz Ege Bu kişi benim 0000-0002-0157-1492

Oğuz Turgut 0000-0001-5480-1039

Emre Aşkın Elibol 0000-0001-8573-6065

Yayımlanma Tarihi 1 Aralık 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 34 Sayı: 4

Kaynak Göster

APA Ege, F., Turgut, O., & Elibol, E. A. (2021). Flow and Heat Transfer in a Trapezoidal Cross-Sectional Microchannel Heat Sink Using Nanofluid. Gazi University Journal of Science, 34(4), 1107-1126. https://doi.org/10.35378/gujs.806591
AMA Ege F, Turgut O, Elibol EA. Flow and Heat Transfer in a Trapezoidal Cross-Sectional Microchannel Heat Sink Using Nanofluid. Gazi University Journal of Science. Aralık 2021;34(4):1107-1126. doi:10.35378/gujs.806591
Chicago Ege, Faraz, Oğuz Turgut, ve Emre Aşkın Elibol. “Flow and Heat Transfer in a Trapezoidal Cross-Sectional Microchannel Heat Sink Using Nanofluid”. Gazi University Journal of Science 34, sy. 4 (Aralık 2021): 1107-26. https://doi.org/10.35378/gujs.806591.
EndNote Ege F, Turgut O, Elibol EA (01 Aralık 2021) Flow and Heat Transfer in a Trapezoidal Cross-Sectional Microchannel Heat Sink Using Nanofluid. Gazi University Journal of Science 34 4 1107–1126.
IEEE F. Ege, O. Turgut, ve E. A. Elibol, “Flow and Heat Transfer in a Trapezoidal Cross-Sectional Microchannel Heat Sink Using Nanofluid”, Gazi University Journal of Science, c. 34, sy. 4, ss. 1107–1126, 2021, doi: 10.35378/gujs.806591.
ISNAD Ege, Faraz vd. “Flow and Heat Transfer in a Trapezoidal Cross-Sectional Microchannel Heat Sink Using Nanofluid”. Gazi University Journal of Science 34/4 (Aralık 2021), 1107-1126. https://doi.org/10.35378/gujs.806591.
JAMA Ege F, Turgut O, Elibol EA. Flow and Heat Transfer in a Trapezoidal Cross-Sectional Microchannel Heat Sink Using Nanofluid. Gazi University Journal of Science. 2021;34:1107–1126.
MLA Ege, Faraz vd. “Flow and Heat Transfer in a Trapezoidal Cross-Sectional Microchannel Heat Sink Using Nanofluid”. Gazi University Journal of Science, c. 34, sy. 4, 2021, ss. 1107-26, doi:10.35378/gujs.806591.
Vancouver Ege F, Turgut O, Elibol EA. Flow and Heat Transfer in a Trapezoidal Cross-Sectional Microchannel Heat Sink Using Nanofluid. Gazi University Journal of Science. 2021;34(4):1107-26.