Araştırma Makalesi
BibTex RIS Kaynak Göster

Color and COD Removal from Real Textile Wastewater using Nanoscale Zero-Value Iron (nZVI)

Yıl 2021, Cilt: 34 Sayı: 4, 973 - 985, 01.12.2021
https://doi.org/10.35378/gujs.837213

Öz

Nanoscale zero-value iron (nZVI) has a high specific surface area and significant abilities to reduce contaminants. In this study, the removal of color and COD from real textile wastewater was studied by nZVI particles. A series of experiments were conducted to evaluate the effect of operational parameters such as solution pH, nZVI dosage and temperature on color and COD removal. The results showed that the color and COD removals mainly depend on solution pH. The color removal efficiencies were 96.3% at 436 nm, 97.8% at 525 nm and 98.0% at 620 nm, respectively at nZVI dosage of 0.3 g/L and initial pH of 3 after 180 minutes of reaction time at 25 ○C. Moreover, the maximum COD removal efficiency obtained under these conditions was 86%.

Kaynakça

  • [1] Ouyang, J., Zhou, L., Liu, Z., Heng, J.Y.Y., Chen, W., “Biomass-derived activated carbons for the removal of pharmaceutical mircopollutants from wastewater: A review”, Sep. Purif. Technol., 253: 117536, (2020).
  • [2] Bulca, Ö., Palas, B., Atalay, S., Ersöz, G. “Performance investigation of the hybrid methods of adsorption or catalytic wet air oxidation subsequent to electrocoagulation in treatment of real textile wastewater and kinetic modelling”, J. Water Process Eng., in press.
  • [3] Ceretta, M.B., Vieira, Y., Wolski, E.A., Foletto, E.L., Silvestri, S., “Biological degradation coupled to photocatalysis by ZnO/polypyrrole composite for the treatment of real textile wastewater”, J. Water Process Eng., 35: 101230, (2020).
  • [4] Bezirhan Arikan, E., Isik, Z., Bouras, H.D., Dizge, N., “Investigation of immobilized filamentous fungi for treatment of real textile industry wastewater using up flow packed bed bioreactor”, Bioresource Technol. Rep., 7: 100197, (2019).
  • [5] Tavangar, T., Jalali, K., Shahmirzadi, M.A.A., Karimi, M., “Toward real textile wastewater treatment: Membrane fouling control and effective fractionation of dyes/inorganic salts using a hybrid electrocoagulation–Nanofiltration process”, Sep. Purif. Technol., 216: 115–125, (2019).
  • [6] Sharma, A., Syed, Z., Brighu, U., Gupta, A.B., Ram, C., “Adsorption of textile wastewater on alkali-activated sand”, J. Clean. Prod., 220: 23–32, (2019).
  • [7] Bayrakdar, M., Atalay, S., Ersöz, G., “Efficient treatment for textile wastewater through sequential photo Fenton-like oxidation and adsorption processes for reuse in irrigation”, Ceram. Int., in press.
  • [8] Kishor, R., Purchase, D., Saratale, G.D., Saratale, R.G., Ferreira, L.F.R., Bilal, M., Chandra, R., Bharagava, R.N., “Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety”, J. Environ. Chem. Eng., 9: 105012, (2021).
  • [9] Al-Degs, Y., Khraisheh, M.A.M., Allen, S.J., Ahmad, M.N., “Effect of carbon surface chemistry on the removal of reactive dyes from textile effluent”, Wat. Res., 34: 927–935, (2000).
  • [10] Raman, C.D., Kanmani, S., “Textile dye degradation using nano zero valent iron: A review”, J. Environ. Manage., 177: 341–355, (2016).
  • [11] He, S., Sun, W., Wang, J., Chen, L., Zhang, Y., Yu, J., “Enhancement of biodegradability of real textile and dyeing wastewater by electron beam irradiation”, Radiat. Phys. Chem., 124: 203–207, (2016).
  • [12] Bougdour, N., Tiskatine, R., Bakas, I., Assabbane, A., “Photocatalytic degradation of industrial textile wastewater using S2O82-/Fe2+ process”, Mater. Today-Proc., 22: 69–72, (2020).
  • [13] Collivignarelli, M.C., Abbà, A., Miino, M.C., Damiani, S., “Treatments for color removal from wastewater: State of the art”, J. Environ. Manage., 236: 727–745, (2019).
  • [14] Khatri, J., Nidheesh, P.V., Anantha Singh, T.S., Suresh Kumar, M., “Advanced oxidation processes based on zero-valent aluminium for treating textile wastewater”, Chem. Eng. J., 348: 67–73, (2018).
  • [15] Kaur, P., Kushwaha, J.P., Sangal, V.K., “Electrocatalytic oxidative treatment of real textile wastewater incontinuous reactor: Degradation pathway and disposability study”, J. Hazard. Mater., 346: 242–252, (2018).
  • [16] Sahinkaya, E., Uzal, N., Yetis, U., Dilek, F.B., “Biological treatment and nanofiltration of denim textile wastewater for reuse”, J. Hazard. Mater., 153: 1142–1148, (2008).
  • [17] Nakhate, P.H., Gadipelly, C.R., Joshi, N.T., Marathe, K.V., “Engineering aspects of catalytic ozonation for purification of real textile industry wastewater at the pilot scale”, J. Ind. Eng. Chem., 69: 77–89, (2019).
  • [18] Domingues, F.S., Geraldino, H.C.L., de Souza Freitas, T.K.F., de Almeida, C.A., de Figueiredo, F.F., Garcia, J.C., “Photocatalytic degradation of real textile wastewater using carbon black-Nb2O5 composite catalyst under UV/Vis irradiation”, Environ. Technol., doi.org/10.1080/09593330.2019.1701565, (2020).
  • [19] Asgari, G., Shabanloo, A., Salarib, M., Eslami, F., “Sonophotocatalytic treatment of AB113 dye and real textile wastewater using ZnO/persulfate: Modeling by response surface methodology and artificial neural network”, Environ. Res., 184: 109367, (2020).
  • [20] Ravikumar, K.V.G., Santhosh, S., Sudakaran, S.V., Nancharaiah, Y.V., Mrudula, P., Chandrasekaran, N., Mukherjee, A., “Biogenic nano zero valent iron (Bio-nZVI) anaerobic granules for textile dye removal”, J. Environ. Chem. Eng., 6: 1683–1689, (2018).
  • [21] Song, H., Carrway, E.R., “Reduction of chlorinated ethanes by nanosized zero-valent iron: kinetics, pathways, and effects of reaction condition”, Environ. Sci. Technol., 39, 6237–6245, (2005).
  • [22] Üzüm, C., Shahwan, T., Eroğlu, A.E., Lieberwirth, I., Scott, T.B., Hallam, K.R., “Application of zero-valent iron nanoparticles for the removal of aqueous Co2+ ions under various experimental conditions”, Chem. Eng. J., 144: 213-220, (2008).
  • [23] Efecan, N., Shahwan, T., Eroğlu, A.E., Lieberwirth, I., “Characterization of theuptake of aqueous Ni2+ ions on nanoparticles of zero-valent iron (nZVI)”, Desalination, 249: 1048–1054, (2009).
  • [24] Xi, Y., Mallavarapu, M., Naidu, R., “Reduction and adsorption of Pb2+ in aqueous solution by nano-zero-valent iron––A SEM, TEM and XPS study”, Mater. Res. Bull., 45: 1361-1367, (2010).
  • [25] Satapanajaru, T., Anurakpongsatorn, P., Pengthamkeerati, P., Boparai, H., “Remediation of atrazine-contaminated soil and water by nano zerovalent iron”, Water Air Soil Poll., 192: 349–359, (2008).
  • [26] Shu, H.-Y., Chang, M.-C., Yu, H.-H., Chen, W.-H., “Reduction of an azo dye Acid Black 24 solution using synthesized nanoscale zerovalent iron particles”, J. Colloid Interf. Sci., 314: 89–97, (2007).
  • [27] Sohrabi, M.R., Amiri, S., Masoumi, H.R.F., Moghri, M., “Optimization of Direct Yellow 12 dye removal by nanoscale zero-valent iron using response surface methodology”, J. Ind. Eng. Chem., 20: 2535–2542, (2014).
  • [28] Sohrabi, M.R., Moghri, M., Masoumi, H.R.F., Amiri, S., Moosavi, N., “Optimization of Reactive Blue 21 removal by nanoscale zero-valent iron using response surface methodology”, Arab. J. Chem., 9: 518–525, (2016).
  • [29] Ling, X.F., Li, J.S., Zhu, W., Zhu, Y.Y., Sun, X.Y., Shen, J.Y., Han, W.Q., Wang, L.J., “Synthesis of nanoscale zero-valent iron/ordered mesoporous carbon for adsorption and synergistic reduction of nitrobenzene”, Chemosphere, 87: 655–660, (2012).
  • [30] Zhang, X., Lin, Y.M., Shan, X.Q., Chen, Z.L., “Degradation of 2,4,6-trinitrotoluene(TNT) from explosive wastewater using nanoscale zero-valent iron”, Chem. Eng. J., 158, 566–570, (2010).
  • [31]Hwang, Y.H., Kim, D.G., Shin, H.S., “Mechanism study of nitrate reduction by nano zero valent iron”, J. Hazard. Mater., 185: 1513–1521, (2011).
  • [32] Eljamal, O., Mokete, R., Matsunaga, N., Sugihara, Y., “Chemical pathways of nanoscale zero-valent ıron (NZVI) during its transformation in aqueous solutions”, J. Environ. Chem. Eng., 6: 6207–6220, (2018).
  • [33] Shoukat, R., Khan, S.J., Jamal, Y., “Hybrid anaerobic-aerobic biological treatment for real textile wastewater”, J. Water Process Eng., 29: 100804, (2019).
  • [34] Hanay, O., Turk, H., “Comprehensive evaluation of adsorption and degradation of tetracycline and oxytetracycline by nanoscale zero-valent iron”, Desalin. Water Treat., 53(7): 1986-1994, (2015).
  • [35] APHA, “Standard Methods for the Examination of Water and Wastewater”, 17th ed., APHA, AWWA, WPCF, American Public Health Association, Washington, D.C., USA, (1989).
  • [36] Tunç, M.S., Tepe, O., “Removal of phenol from aqueous solution using persulfate activated with nanoscale zero-valent iron”, Desalin. Water Treat., 74: 269–277, (2017).
  • [37] Sawafta, R., Shahwan, T., “A comparative study of the removal of methylene blue by iron nanoparticles from water and water-ethanol solutions”, J. Mol. Liq., 273: 274–281, (2019).
  • [38] Fang, Z., Chen, J., Qiu, X., Qiu, X., Cheng, W., Zhu, L., “Effective removal of antibiotic metronidazole from water by nanoscale zero-valent iron particles”, Desalination, 268: 60–67, (2011).
  • [39] Chen, Y., Lin, Z., Hao, R., Xu, H., Huang, C., “Rapid adsorption and reductive degradation of Naphthol Green B from aqueous solution by Polypyrrole/Attapulgite composites supported nanoscale zero-valent iron”, J. Hazard. Mater., 371: 8–17, (2019).
  • [40] Dutta, S., Saha, R., Kalita, H., Bezbaruah, A.N., “Rapid reductive degradation of azo and anthraquinone dyes by nanoscale zero-valent iron”, Environ. Technol. Innov., 5: 176–187, (2016).
  • [41] Weng, X., Cai, W., Lin, S., Chen, Z., “Degradation mechanism of amoxicillin using clay supported nanoscale zerovalent iron”, Appl. Clay Sci., 147: 137–142, (2017).
  • [42] Zhang, B., Wang, D., “Preparation of biomass activated carbon supported nanoscale zero-valent iron (nZVI) and its application in decolorization of methyl orange from aqueous solution”, Water, 11: 1671, (2019).
  • [43] Satapanajaru, T., Chompuchan, C., Suntornchot, P., Pengthamkeerati, P., “Enhancing decolorization of Reactive Black 5 and Reactive Red 198 during nano zerovalent iron treatment”, Desalination, 266: 218–230, (2011).
  • [44] Xia, S., Gu, Z., Zhang, Z., Zhang, J., Hermanowicz, S.W., “Removal of chloramphenicol from aqueous solution by nanoscale zero-valent iron particles”, Chem. Eng. J., 257: 98–104, (2014).
  • [45] Chen, Z.-X., Jin, X.-Y., Chen, Z., Megharaj, M., Naidu, R., “Removal of methyl orange from aqueous solution using bentonite-supported nanoscale zero-valent iron”, J. Colloid Interf. Sci., 363: 601–607, (2011).
Yıl 2021, Cilt: 34 Sayı: 4, 973 - 985, 01.12.2021
https://doi.org/10.35378/gujs.837213

Öz

Kaynakça

  • [1] Ouyang, J., Zhou, L., Liu, Z., Heng, J.Y.Y., Chen, W., “Biomass-derived activated carbons for the removal of pharmaceutical mircopollutants from wastewater: A review”, Sep. Purif. Technol., 253: 117536, (2020).
  • [2] Bulca, Ö., Palas, B., Atalay, S., Ersöz, G. “Performance investigation of the hybrid methods of adsorption or catalytic wet air oxidation subsequent to electrocoagulation in treatment of real textile wastewater and kinetic modelling”, J. Water Process Eng., in press.
  • [3] Ceretta, M.B., Vieira, Y., Wolski, E.A., Foletto, E.L., Silvestri, S., “Biological degradation coupled to photocatalysis by ZnO/polypyrrole composite for the treatment of real textile wastewater”, J. Water Process Eng., 35: 101230, (2020).
  • [4] Bezirhan Arikan, E., Isik, Z., Bouras, H.D., Dizge, N., “Investigation of immobilized filamentous fungi for treatment of real textile industry wastewater using up flow packed bed bioreactor”, Bioresource Technol. Rep., 7: 100197, (2019).
  • [5] Tavangar, T., Jalali, K., Shahmirzadi, M.A.A., Karimi, M., “Toward real textile wastewater treatment: Membrane fouling control and effective fractionation of dyes/inorganic salts using a hybrid electrocoagulation–Nanofiltration process”, Sep. Purif. Technol., 216: 115–125, (2019).
  • [6] Sharma, A., Syed, Z., Brighu, U., Gupta, A.B., Ram, C., “Adsorption of textile wastewater on alkali-activated sand”, J. Clean. Prod., 220: 23–32, (2019).
  • [7] Bayrakdar, M., Atalay, S., Ersöz, G., “Efficient treatment for textile wastewater through sequential photo Fenton-like oxidation and adsorption processes for reuse in irrigation”, Ceram. Int., in press.
  • [8] Kishor, R., Purchase, D., Saratale, G.D., Saratale, R.G., Ferreira, L.F.R., Bilal, M., Chandra, R., Bharagava, R.N., “Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety”, J. Environ. Chem. Eng., 9: 105012, (2021).
  • [9] Al-Degs, Y., Khraisheh, M.A.M., Allen, S.J., Ahmad, M.N., “Effect of carbon surface chemistry on the removal of reactive dyes from textile effluent”, Wat. Res., 34: 927–935, (2000).
  • [10] Raman, C.D., Kanmani, S., “Textile dye degradation using nano zero valent iron: A review”, J. Environ. Manage., 177: 341–355, (2016).
  • [11] He, S., Sun, W., Wang, J., Chen, L., Zhang, Y., Yu, J., “Enhancement of biodegradability of real textile and dyeing wastewater by electron beam irradiation”, Radiat. Phys. Chem., 124: 203–207, (2016).
  • [12] Bougdour, N., Tiskatine, R., Bakas, I., Assabbane, A., “Photocatalytic degradation of industrial textile wastewater using S2O82-/Fe2+ process”, Mater. Today-Proc., 22: 69–72, (2020).
  • [13] Collivignarelli, M.C., Abbà, A., Miino, M.C., Damiani, S., “Treatments for color removal from wastewater: State of the art”, J. Environ. Manage., 236: 727–745, (2019).
  • [14] Khatri, J., Nidheesh, P.V., Anantha Singh, T.S., Suresh Kumar, M., “Advanced oxidation processes based on zero-valent aluminium for treating textile wastewater”, Chem. Eng. J., 348: 67–73, (2018).
  • [15] Kaur, P., Kushwaha, J.P., Sangal, V.K., “Electrocatalytic oxidative treatment of real textile wastewater incontinuous reactor: Degradation pathway and disposability study”, J. Hazard. Mater., 346: 242–252, (2018).
  • [16] Sahinkaya, E., Uzal, N., Yetis, U., Dilek, F.B., “Biological treatment and nanofiltration of denim textile wastewater for reuse”, J. Hazard. Mater., 153: 1142–1148, (2008).
  • [17] Nakhate, P.H., Gadipelly, C.R., Joshi, N.T., Marathe, K.V., “Engineering aspects of catalytic ozonation for purification of real textile industry wastewater at the pilot scale”, J. Ind. Eng. Chem., 69: 77–89, (2019).
  • [18] Domingues, F.S., Geraldino, H.C.L., de Souza Freitas, T.K.F., de Almeida, C.A., de Figueiredo, F.F., Garcia, J.C., “Photocatalytic degradation of real textile wastewater using carbon black-Nb2O5 composite catalyst under UV/Vis irradiation”, Environ. Technol., doi.org/10.1080/09593330.2019.1701565, (2020).
  • [19] Asgari, G., Shabanloo, A., Salarib, M., Eslami, F., “Sonophotocatalytic treatment of AB113 dye and real textile wastewater using ZnO/persulfate: Modeling by response surface methodology and artificial neural network”, Environ. Res., 184: 109367, (2020).
  • [20] Ravikumar, K.V.G., Santhosh, S., Sudakaran, S.V., Nancharaiah, Y.V., Mrudula, P., Chandrasekaran, N., Mukherjee, A., “Biogenic nano zero valent iron (Bio-nZVI) anaerobic granules for textile dye removal”, J. Environ. Chem. Eng., 6: 1683–1689, (2018).
  • [21] Song, H., Carrway, E.R., “Reduction of chlorinated ethanes by nanosized zero-valent iron: kinetics, pathways, and effects of reaction condition”, Environ. Sci. Technol., 39, 6237–6245, (2005).
  • [22] Üzüm, C., Shahwan, T., Eroğlu, A.E., Lieberwirth, I., Scott, T.B., Hallam, K.R., “Application of zero-valent iron nanoparticles for the removal of aqueous Co2+ ions under various experimental conditions”, Chem. Eng. J., 144: 213-220, (2008).
  • [23] Efecan, N., Shahwan, T., Eroğlu, A.E., Lieberwirth, I., “Characterization of theuptake of aqueous Ni2+ ions on nanoparticles of zero-valent iron (nZVI)”, Desalination, 249: 1048–1054, (2009).
  • [24] Xi, Y., Mallavarapu, M., Naidu, R., “Reduction and adsorption of Pb2+ in aqueous solution by nano-zero-valent iron––A SEM, TEM and XPS study”, Mater. Res. Bull., 45: 1361-1367, (2010).
  • [25] Satapanajaru, T., Anurakpongsatorn, P., Pengthamkeerati, P., Boparai, H., “Remediation of atrazine-contaminated soil and water by nano zerovalent iron”, Water Air Soil Poll., 192: 349–359, (2008).
  • [26] Shu, H.-Y., Chang, M.-C., Yu, H.-H., Chen, W.-H., “Reduction of an azo dye Acid Black 24 solution using synthesized nanoscale zerovalent iron particles”, J. Colloid Interf. Sci., 314: 89–97, (2007).
  • [27] Sohrabi, M.R., Amiri, S., Masoumi, H.R.F., Moghri, M., “Optimization of Direct Yellow 12 dye removal by nanoscale zero-valent iron using response surface methodology”, J. Ind. Eng. Chem., 20: 2535–2542, (2014).
  • [28] Sohrabi, M.R., Moghri, M., Masoumi, H.R.F., Amiri, S., Moosavi, N., “Optimization of Reactive Blue 21 removal by nanoscale zero-valent iron using response surface methodology”, Arab. J. Chem., 9: 518–525, (2016).
  • [29] Ling, X.F., Li, J.S., Zhu, W., Zhu, Y.Y., Sun, X.Y., Shen, J.Y., Han, W.Q., Wang, L.J., “Synthesis of nanoscale zero-valent iron/ordered mesoporous carbon for adsorption and synergistic reduction of nitrobenzene”, Chemosphere, 87: 655–660, (2012).
  • [30] Zhang, X., Lin, Y.M., Shan, X.Q., Chen, Z.L., “Degradation of 2,4,6-trinitrotoluene(TNT) from explosive wastewater using nanoscale zero-valent iron”, Chem. Eng. J., 158, 566–570, (2010).
  • [31]Hwang, Y.H., Kim, D.G., Shin, H.S., “Mechanism study of nitrate reduction by nano zero valent iron”, J. Hazard. Mater., 185: 1513–1521, (2011).
  • [32] Eljamal, O., Mokete, R., Matsunaga, N., Sugihara, Y., “Chemical pathways of nanoscale zero-valent ıron (NZVI) during its transformation in aqueous solutions”, J. Environ. Chem. Eng., 6: 6207–6220, (2018).
  • [33] Shoukat, R., Khan, S.J., Jamal, Y., “Hybrid anaerobic-aerobic biological treatment for real textile wastewater”, J. Water Process Eng., 29: 100804, (2019).
  • [34] Hanay, O., Turk, H., “Comprehensive evaluation of adsorption and degradation of tetracycline and oxytetracycline by nanoscale zero-valent iron”, Desalin. Water Treat., 53(7): 1986-1994, (2015).
  • [35] APHA, “Standard Methods for the Examination of Water and Wastewater”, 17th ed., APHA, AWWA, WPCF, American Public Health Association, Washington, D.C., USA, (1989).
  • [36] Tunç, M.S., Tepe, O., “Removal of phenol from aqueous solution using persulfate activated with nanoscale zero-valent iron”, Desalin. Water Treat., 74: 269–277, (2017).
  • [37] Sawafta, R., Shahwan, T., “A comparative study of the removal of methylene blue by iron nanoparticles from water and water-ethanol solutions”, J. Mol. Liq., 273: 274–281, (2019).
  • [38] Fang, Z., Chen, J., Qiu, X., Qiu, X., Cheng, W., Zhu, L., “Effective removal of antibiotic metronidazole from water by nanoscale zero-valent iron particles”, Desalination, 268: 60–67, (2011).
  • [39] Chen, Y., Lin, Z., Hao, R., Xu, H., Huang, C., “Rapid adsorption and reductive degradation of Naphthol Green B from aqueous solution by Polypyrrole/Attapulgite composites supported nanoscale zero-valent iron”, J. Hazard. Mater., 371: 8–17, (2019).
  • [40] Dutta, S., Saha, R., Kalita, H., Bezbaruah, A.N., “Rapid reductive degradation of azo and anthraquinone dyes by nanoscale zero-valent iron”, Environ. Technol. Innov., 5: 176–187, (2016).
  • [41] Weng, X., Cai, W., Lin, S., Chen, Z., “Degradation mechanism of amoxicillin using clay supported nanoscale zerovalent iron”, Appl. Clay Sci., 147: 137–142, (2017).
  • [42] Zhang, B., Wang, D., “Preparation of biomass activated carbon supported nanoscale zero-valent iron (nZVI) and its application in decolorization of methyl orange from aqueous solution”, Water, 11: 1671, (2019).
  • [43] Satapanajaru, T., Chompuchan, C., Suntornchot, P., Pengthamkeerati, P., “Enhancing decolorization of Reactive Black 5 and Reactive Red 198 during nano zerovalent iron treatment”, Desalination, 266: 218–230, (2011).
  • [44] Xia, S., Gu, Z., Zhang, Z., Zhang, J., Hermanowicz, S.W., “Removal of chloramphenicol from aqueous solution by nanoscale zero-valent iron particles”, Chem. Eng. J., 257: 98–104, (2014).
  • [45] Chen, Z.-X., Jin, X.-Y., Chen, Z., Megharaj, M., Naidu, R., “Removal of methyl orange from aqueous solution using bentonite-supported nanoscale zero-valent iron”, J. Colloid Interf. Sci., 363: 601–607, (2011).
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Chemical Engineering
Yazarlar

Özlem Tepe 0000-0001-8336-3699

Müslün Sara Tunç 0000-0001-9907-0428

Özge Hanay 0000-0002-4238-3236

Yayımlanma Tarihi 1 Aralık 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 34 Sayı: 4

Kaynak Göster

APA Tepe, Ö., Tunç, M. S., & Hanay, Ö. (2021). Color and COD Removal from Real Textile Wastewater using Nanoscale Zero-Value Iron (nZVI). Gazi University Journal of Science, 34(4), 973-985. https://doi.org/10.35378/gujs.837213
AMA Tepe Ö, Tunç MS, Hanay Ö. Color and COD Removal from Real Textile Wastewater using Nanoscale Zero-Value Iron (nZVI). Gazi University Journal of Science. Aralık 2021;34(4):973-985. doi:10.35378/gujs.837213
Chicago Tepe, Özlem, Müslün Sara Tunç, ve Özge Hanay. “Color and COD Removal from Real Textile Wastewater Using Nanoscale Zero-Value Iron (nZVI)”. Gazi University Journal of Science 34, sy. 4 (Aralık 2021): 973-85. https://doi.org/10.35378/gujs.837213.
EndNote Tepe Ö, Tunç MS, Hanay Ö (01 Aralık 2021) Color and COD Removal from Real Textile Wastewater using Nanoscale Zero-Value Iron (nZVI). Gazi University Journal of Science 34 4 973–985.
IEEE Ö. Tepe, M. S. Tunç, ve Ö. Hanay, “Color and COD Removal from Real Textile Wastewater using Nanoscale Zero-Value Iron (nZVI)”, Gazi University Journal of Science, c. 34, sy. 4, ss. 973–985, 2021, doi: 10.35378/gujs.837213.
ISNAD Tepe, Özlem vd. “Color and COD Removal from Real Textile Wastewater Using Nanoscale Zero-Value Iron (nZVI)”. Gazi University Journal of Science 34/4 (Aralık 2021), 973-985. https://doi.org/10.35378/gujs.837213.
JAMA Tepe Ö, Tunç MS, Hanay Ö. Color and COD Removal from Real Textile Wastewater using Nanoscale Zero-Value Iron (nZVI). Gazi University Journal of Science. 2021;34:973–985.
MLA Tepe, Özlem vd. “Color and COD Removal from Real Textile Wastewater Using Nanoscale Zero-Value Iron (nZVI)”. Gazi University Journal of Science, c. 34, sy. 4, 2021, ss. 973-85, doi:10.35378/gujs.837213.
Vancouver Tepe Ö, Tunç MS, Hanay Ö. Color and COD Removal from Real Textile Wastewater using Nanoscale Zero-Value Iron (nZVI). Gazi University Journal of Science. 2021;34(4):973-85.