Research Article
BibTex RIS Cite

Electromagnetic Band Gap Based Via-less Jeans Patch Antenna for 5.5GHz WiMAX Application

Year 2023, Volume: 36 Issue: 1, 220 - 236, 01.03.2023
https://doi.org/10.35378/gujs.1008125

Abstract

Wearable electronics have gained opportunities in recent years, and the last decade has been evidence of this growth in Wireless Body Area Networks (WBAN). They meet the criteria for personalizing healthcare, communication, patient monitoring, tracking, and rescue operations. The main challenge for the WBAN is to handle the radiator's coupling with the human body. An artificially generated Electromagnetic Band Gap (EBG) structure was designed and used in this work to improve the performance of a microstrip patch antenna. A jeans-based microstrip patch antenna with an EBG surface demonstrated to enhance the performance for 5.5 GHz WiMAX application. The use of an EBG surface increases return loss by 20%, with a reasonable bandwidth of 0.528 GHz (5.271 GHz to 5.749 GHz) at the resonance frequency of 5.5 GHz. The EBG surface improved the Voltage Standing Wave Ratio (VSWR) by 60%. A three-layered human body tissue model is also used for on-body measurements to determine the performance of an EBG-based antenna. The presence of human tissues generally reduces performance and shifts the resonance, but the shifting in this work with the simplified EBG structure and adequate gain and VSWR is only 2.6 percent.

Supporting Institution

NO

Project Number

NA

References

  • [1] Okan, Tayfun, “A Wideband Conductor Backed Coplanar Waveguide Fed Implantable Antenna Operable in Different Tissues for Biotelemetry Applications”, Radioengineering, 30(2): 335-341, (2021). DOI: https://doi.org/10.13164/re.2021.0335
  • [2] Ashyap, A., Y., I, Marzudi, W., N., N., W., Abidin, Z., Z., Dahlan, S., H., Majid, H., A., and Kamaruddin, M., R., “Antenna incorporated with Electromagnetic Bandgap (EBG) for wearable Application at 2.4 GHz wireless bands”, Institute of Electrical and Electronics Engineers Asia-Pacific Conference on Applied Electromagnetics, 217- 221, (2016). DOI: https://doi.org/10.1109/ APACE.2016.7915890
  • [3] Ashyap, A., Y., I., Abidin, Z., Z., and Dahlan, S., H., “Highly Efficient Wearable CPW Antenna Enabled by EBG-FSS Structure for Medical Body Area Network Applications”, Institute of Electrical and Electronics Engineers Access, 6: 77529–77541, (2018). DOI: https://doi.org/10.1109/ACCESS.2018.2883379
  • [4] Stango, A., Yazdandoost, K., Y., Negro, F., and Farina, D., “Characterization of In-Body to On-BodyWireless Radio Frequency Link for Upper Limb Prostheses”, Public Library of Science One, 11(10): (2016). DOI: https:// doi.org/10.1371/journal.pone.0164987 PMID: 27764182
  • [5] Irmak, E., Goçmen, G., Ahsan, M., R, Islam, M., T, Ullah, M., H., Singh, M.J, and Ali, M., T., “Metasurface Reflector (MSR) Loading for High-Performance Small Microstrip Antenna Design”, Public Library of Science One, 10(5): (2015). DOI: https:// doi.org/10.1371/journal.pone.0127185 PMID: 26018795
  • [6] Faruque, M., R., I., and Islam M., T., “Design of Miniaturized Double-Negative Material for Specific Absorption Rate Reduction in Human Head”, Public Library of Science One, 9(10): (2014). DOI: https://doi.org/10.1371/ journal. pone.0109947 PMID: 25350398
  • [7] Liao, W., J., Chang, S., H., and Li., L., K., “A compact planar multiband antenna for integrated mobile device”, Progress In Electromagnetics Research, 109: 1–16, (2009).
  • [8] Mu, X., Jiang, W., Gong, S., X. and Wang, F., W., “Dual-band low profiles directional antenna with high impedance surface reflector”, Progress In Electromagnetics Research Letters, 25: 67–75, (2011).
  • [9] Xie, H., H., Jiao,Y., C., Song, K., and Yang, B., “Miniature electromagnetic band-gap structure using spiral ground plane”, Progress In Electromagnetics Research,130: 163-170, (2010).
  • [10] Tiang, J., J., Islam, M., T., Misran, N., and Mandeep, J., S.,“Circular microstrip slot antenna for dual-frequency RFID application”, Progress In Electromagnetics Research, 120: 499–512, (2011). DOI: https://doi:10.2528/PIER11090202
  • [11] Habib, M., A., Bostani, A., Djaiz, A., Nedil, M., Yagoub, M., C., E., and Denidni, T., A., “Ultra wideband CPW-FED aperture antenna with WLAN band rejection”, Progress In Electromagnetics Research, 106: 17–31, (2010). DOI: https:// doi:10.2528/PIER10011905
  • [12] Gujral, M., Li, J., L., W., Yuan, T., and Qiu, C., W., “Bandwidth improvement of microstrip antenna array using dummy EBG pattern on feeding”, Progress In Electromagnetics Research, 127: 79–92, (2012).
  • [13] Abedin, M., F., and M., Ali, “Effects of a smaller unit cell planar EBG structure on the mutual coupling of a printed dipole array”, Institute of Electrical and Electronics Engineers-Antennas and Wireless Propagation Letter, 4: 274–276, (2005). DOI: https://doi:10.1109/LAWP.2005.854004
  • [14] Xie, H., H., Jiao, Y., C., Chen, L., N., and Zhang, F., S., “An effective analysis method for EBG reducing patch antenna coupling”, Progress In Electromagnetics Research Letters, 21: 187– 193, (2011). DOI: https://doi:10.2528/PIERL11022313
  • [15] Capet, N., Martel, C., Sokoloff, J., and Pascal, O., “Optimum high impedance surface configuration for mutual coupling reduction in small antenna arrays”, Progress In Electromagnetics Research B, 32: 283–297, (2011). DOI: https://doi:10.2528/PIERB11050506
  • [16] Ashyap, A., Y.,I., Abidin, Z., Z., Dahlan, S., H., Samsul H., Majid, H., A., Kamarudin, M., R., Alomainy, A., Abd-Alhameed, R., A., Kosha, J., S., Noras, J., M., “Highly Efficient Wearable CPW Antenna Enabled by EBG-FSS Structure for Medical Body Area Network Applications”, Institute of Electrical and Electronics Engineers Access, 6: 77529–77541, (2018). DOI: https://doi.org/10.1109/ACCESS.2018.2883379
  • [17] Agarwal, K., Guo ,Y., X., and Salam, B. “Wearable AMC Backed Near-Endfire Antenna for On-Body Communications on Latex Substrate”, Institute of Electrical and Electronics Engineers Transactions on Antennas and Propagation Components, Packag Manufacuturing Technolgy, 6(3): 346–358, (2016). DOI: https://doi.org/10.1109/TCPMT.2016.2521487
  • [18] Ashyap, A.Y.I., Dahlan, S., H., Abidin ,Z., Z., Dhari, M., H., Majid, Huda A., Kamarudin, M., R., Yee, See-Khee, Jamaluddin, M., H., and Alomainy, A., Abbasi, Q., H, “Robust and Efficient Integrated Antenna With EBG-DGS Enabled Wide Bandwidth for Wearable Medical Device Applications”, Institute of Electrical and Electronics Engineers Access, 8: 56346– 56358, (2020). DOI: https://doi.org/10.1109/ACCESS.2020.2981867
  • [19] Kamardin, K., Rahim, M.,K., A., Hall, P.,S., Samsuri, N., A, Latef ,T.,A., and Ullah, M.H., “Planar Textile antennas with artificial magnetic conductor for body-centric communications”, Applied Physics A.,122(4): 363, (2016). DOI: https://doi. org/10.1007/s00339-016-9914-0
  • [20] Faruque, M.,R.,I., and Islam, M.,T., “Design of Miniaturized Double-Negative Material for Specific Absorption Rate Reduction in Human Head”, Hong J, Public Library of Science One. 9(10): (2014). DOI: https://doi.org/10.1371/ journal.pone.0109947 PMID: 25350398
  • [21] Abbasi, M.,A.,B., Nikolaou, S., S., Antoniades, M.,A., Nikolic Stevanovic, M., and Vryonides, P., “Compact EBG-Backed Planar Monopole for BAN Wearable Applications”, Institute of Electrical and Electronics Engineers Transactions on Antennas and Propagation., 65(2): 453–463, (2017). DOI: https://doi.org/10.1109/TAP.2016.2635588
  • [22] Jiang, Z., H., Cui Z., Yue, T., Zhu Y., and Werner D.,H., “Compact, Highly Efficient, and Fully Flexible Circularly Polarized Antenna Enabled by Silver Nanowires for Wireless Body-Area Networks”, Institute of Electrical and Electronics Engineers Transcation Biomedical Circuits Systems,11(4): 920-932, (2017). DOI: https://doi.org/10.1109/TBCAS.2017.2671841 PMID: 28541907
  • [23] Stango, A., Yazdandoost, K.,Y., Negro, F., and Farina, D., “Characterization of In-Body to OnBody Wireless Radio Frequency Link for Upper Limb Prostheses”, Public Library of Science ONE, 11(10): (2016). DOI: 10.1371/journal.pone.0164987
  • [24] Guan, C., E., and Fujimoto ,T., “Design of a Wideband L-Shape Fed Microstrip Patch Antenna Backed by Conductor Plane for Medical Body Area Network”, Electronics., 9(1): 21, (2019). DOI: https://doi.org/10.3390/ electronics9010021
  • [25] Gao G., P., Hu B., Wang S., F., and Yang C., “Wearable Circular Ring Slot Antenna With EBG Structure for Wireless Body Area Network”, Institute of Electrical and Electronics Engineers Antennas Wireless Propagation Letter, 17(3): 434–437, (2018). DOI: https://doi.org/10. 1109/LAWP.2018.2794061
  • [26] Park, S., and Jayaraman, S., “Enhancing the quality of life through wearable technology”, Institute of Electrical and Electronics Engineers Engineering in Medicine and Biology Magazine, 22(3): 41-48, (2003).
  • [27] Cherenack, K., and Van Pieterson, L., “Smart textiles: Challenges and opportunities”, Journal of Applied Physics, 112, 091301, (2012).
  • [28] Van Langenhove, L., “Smart Textiles for Protection: An Overview, in Smart Textiles for Protection”, Chapman, R., A., Editor, Woodhead Publishing, Cambridge, United Kingdom, 3–33: (2013).
  • [29] Koncar, V., “Introduction to smart textiles and their applications, in Smart Textiles and their Applications”, Koncar, V., Editor., Woodhead Publishing Series in Textiles : Cambridge, United Kingdom, 1–8: (2016).
  • [30] Kongahage, D., and Foroughi, J., “Actuator Materials: Review on Recent Advances and Future Outlook for Smart Textiles”, Fibers, 7: 21, (2019).
  • [31] Kohler, A., R., “Challenges for eco-design of emerging technologies: The case of electronic Textiles”, Materials and Design, 51: 51–60, (2013).
  • [32] Locher, I., Klemm, M., Kirstein, T., and Troster, G., “Design and Characterization of Purely Textile Patch Antennas”, Institute of Electrical and Electronics Engineers Transactions on Advanced Packaging, 29: 777–788, (2006).
  • [33] Salonen, P., and Rahmat Samii, Y., “Textile antennas: Effects of antenna bending on input matching and impedance bandwidth”, Aerospace and Electronic Systems Magazine. 22: 18–22, (2007).
  • [34] Hertleer, C., Tronquo, A., Rogier, H., and Van Langenhove, L., “The Use of Textile Materials to Design Wearable Microstrip Patch Antennas”, Textile Research Journal, 78: 651–658, (2008).
  • [35] Salonen, P., Keskilammi, M., Rantanen, J., and Sydanheimo, L., “A novel Bluetooth antenna on flexible substrate for smart clothing”, In Proceedings of the 2001 Institute of Electrical and Electronics Engineers International Conference on Systems, Man and Cybernetics, E-Systems, and E- Man for Cybernetics in Cyberspace, 2: 789-794, (2001).
  • [36] http://www.ansoft.com/products/hf/hfss/. Access date: 10.09.2021.
  • [37] http://niremf.ifac.cnr.it/tissprop/#refs. Access date: 04.02.2022.
Year 2023, Volume: 36 Issue: 1, 220 - 236, 01.03.2023
https://doi.org/10.35378/gujs.1008125

Abstract

Project Number

NA

References

  • [1] Okan, Tayfun, “A Wideband Conductor Backed Coplanar Waveguide Fed Implantable Antenna Operable in Different Tissues for Biotelemetry Applications”, Radioengineering, 30(2): 335-341, (2021). DOI: https://doi.org/10.13164/re.2021.0335
  • [2] Ashyap, A., Y., I, Marzudi, W., N., N., W., Abidin, Z., Z., Dahlan, S., H., Majid, H., A., and Kamaruddin, M., R., “Antenna incorporated with Electromagnetic Bandgap (EBG) for wearable Application at 2.4 GHz wireless bands”, Institute of Electrical and Electronics Engineers Asia-Pacific Conference on Applied Electromagnetics, 217- 221, (2016). DOI: https://doi.org/10.1109/ APACE.2016.7915890
  • [3] Ashyap, A., Y., I., Abidin, Z., Z., and Dahlan, S., H., “Highly Efficient Wearable CPW Antenna Enabled by EBG-FSS Structure for Medical Body Area Network Applications”, Institute of Electrical and Electronics Engineers Access, 6: 77529–77541, (2018). DOI: https://doi.org/10.1109/ACCESS.2018.2883379
  • [4] Stango, A., Yazdandoost, K., Y., Negro, F., and Farina, D., “Characterization of In-Body to On-BodyWireless Radio Frequency Link for Upper Limb Prostheses”, Public Library of Science One, 11(10): (2016). DOI: https:// doi.org/10.1371/journal.pone.0164987 PMID: 27764182
  • [5] Irmak, E., Goçmen, G., Ahsan, M., R, Islam, M., T, Ullah, M., H., Singh, M.J, and Ali, M., T., “Metasurface Reflector (MSR) Loading for High-Performance Small Microstrip Antenna Design”, Public Library of Science One, 10(5): (2015). DOI: https:// doi.org/10.1371/journal.pone.0127185 PMID: 26018795
  • [6] Faruque, M., R., I., and Islam M., T., “Design of Miniaturized Double-Negative Material for Specific Absorption Rate Reduction in Human Head”, Public Library of Science One, 9(10): (2014). DOI: https://doi.org/10.1371/ journal. pone.0109947 PMID: 25350398
  • [7] Liao, W., J., Chang, S., H., and Li., L., K., “A compact planar multiband antenna for integrated mobile device”, Progress In Electromagnetics Research, 109: 1–16, (2009).
  • [8] Mu, X., Jiang, W., Gong, S., X. and Wang, F., W., “Dual-band low profiles directional antenna with high impedance surface reflector”, Progress In Electromagnetics Research Letters, 25: 67–75, (2011).
  • [9] Xie, H., H., Jiao,Y., C., Song, K., and Yang, B., “Miniature electromagnetic band-gap structure using spiral ground plane”, Progress In Electromagnetics Research,130: 163-170, (2010).
  • [10] Tiang, J., J., Islam, M., T., Misran, N., and Mandeep, J., S.,“Circular microstrip slot antenna for dual-frequency RFID application”, Progress In Electromagnetics Research, 120: 499–512, (2011). DOI: https://doi:10.2528/PIER11090202
  • [11] Habib, M., A., Bostani, A., Djaiz, A., Nedil, M., Yagoub, M., C., E., and Denidni, T., A., “Ultra wideband CPW-FED aperture antenna with WLAN band rejection”, Progress In Electromagnetics Research, 106: 17–31, (2010). DOI: https:// doi:10.2528/PIER10011905
  • [12] Gujral, M., Li, J., L., W., Yuan, T., and Qiu, C., W., “Bandwidth improvement of microstrip antenna array using dummy EBG pattern on feeding”, Progress In Electromagnetics Research, 127: 79–92, (2012).
  • [13] Abedin, M., F., and M., Ali, “Effects of a smaller unit cell planar EBG structure on the mutual coupling of a printed dipole array”, Institute of Electrical and Electronics Engineers-Antennas and Wireless Propagation Letter, 4: 274–276, (2005). DOI: https://doi:10.1109/LAWP.2005.854004
  • [14] Xie, H., H., Jiao, Y., C., Chen, L., N., and Zhang, F., S., “An effective analysis method for EBG reducing patch antenna coupling”, Progress In Electromagnetics Research Letters, 21: 187– 193, (2011). DOI: https://doi:10.2528/PIERL11022313
  • [15] Capet, N., Martel, C., Sokoloff, J., and Pascal, O., “Optimum high impedance surface configuration for mutual coupling reduction in small antenna arrays”, Progress In Electromagnetics Research B, 32: 283–297, (2011). DOI: https://doi:10.2528/PIERB11050506
  • [16] Ashyap, A., Y.,I., Abidin, Z., Z., Dahlan, S., H., Samsul H., Majid, H., A., Kamarudin, M., R., Alomainy, A., Abd-Alhameed, R., A., Kosha, J., S., Noras, J., M., “Highly Efficient Wearable CPW Antenna Enabled by EBG-FSS Structure for Medical Body Area Network Applications”, Institute of Electrical and Electronics Engineers Access, 6: 77529–77541, (2018). DOI: https://doi.org/10.1109/ACCESS.2018.2883379
  • [17] Agarwal, K., Guo ,Y., X., and Salam, B. “Wearable AMC Backed Near-Endfire Antenna for On-Body Communications on Latex Substrate”, Institute of Electrical and Electronics Engineers Transactions on Antennas and Propagation Components, Packag Manufacuturing Technolgy, 6(3): 346–358, (2016). DOI: https://doi.org/10.1109/TCPMT.2016.2521487
  • [18] Ashyap, A.Y.I., Dahlan, S., H., Abidin ,Z., Z., Dhari, M., H., Majid, Huda A., Kamarudin, M., R., Yee, See-Khee, Jamaluddin, M., H., and Alomainy, A., Abbasi, Q., H, “Robust and Efficient Integrated Antenna With EBG-DGS Enabled Wide Bandwidth for Wearable Medical Device Applications”, Institute of Electrical and Electronics Engineers Access, 8: 56346– 56358, (2020). DOI: https://doi.org/10.1109/ACCESS.2020.2981867
  • [19] Kamardin, K., Rahim, M.,K., A., Hall, P.,S., Samsuri, N., A, Latef ,T.,A., and Ullah, M.H., “Planar Textile antennas with artificial magnetic conductor for body-centric communications”, Applied Physics A.,122(4): 363, (2016). DOI: https://doi. org/10.1007/s00339-016-9914-0
  • [20] Faruque, M.,R.,I., and Islam, M.,T., “Design of Miniaturized Double-Negative Material for Specific Absorption Rate Reduction in Human Head”, Hong J, Public Library of Science One. 9(10): (2014). DOI: https://doi.org/10.1371/ journal.pone.0109947 PMID: 25350398
  • [21] Abbasi, M.,A.,B., Nikolaou, S., S., Antoniades, M.,A., Nikolic Stevanovic, M., and Vryonides, P., “Compact EBG-Backed Planar Monopole for BAN Wearable Applications”, Institute of Electrical and Electronics Engineers Transactions on Antennas and Propagation., 65(2): 453–463, (2017). DOI: https://doi.org/10.1109/TAP.2016.2635588
  • [22] Jiang, Z., H., Cui Z., Yue, T., Zhu Y., and Werner D.,H., “Compact, Highly Efficient, and Fully Flexible Circularly Polarized Antenna Enabled by Silver Nanowires for Wireless Body-Area Networks”, Institute of Electrical and Electronics Engineers Transcation Biomedical Circuits Systems,11(4): 920-932, (2017). DOI: https://doi.org/10.1109/TBCAS.2017.2671841 PMID: 28541907
  • [23] Stango, A., Yazdandoost, K.,Y., Negro, F., and Farina, D., “Characterization of In-Body to OnBody Wireless Radio Frequency Link for Upper Limb Prostheses”, Public Library of Science ONE, 11(10): (2016). DOI: 10.1371/journal.pone.0164987
  • [24] Guan, C., E., and Fujimoto ,T., “Design of a Wideband L-Shape Fed Microstrip Patch Antenna Backed by Conductor Plane for Medical Body Area Network”, Electronics., 9(1): 21, (2019). DOI: https://doi.org/10.3390/ electronics9010021
  • [25] Gao G., P., Hu B., Wang S., F., and Yang C., “Wearable Circular Ring Slot Antenna With EBG Structure for Wireless Body Area Network”, Institute of Electrical and Electronics Engineers Antennas Wireless Propagation Letter, 17(3): 434–437, (2018). DOI: https://doi.org/10. 1109/LAWP.2018.2794061
  • [26] Park, S., and Jayaraman, S., “Enhancing the quality of life through wearable technology”, Institute of Electrical and Electronics Engineers Engineering in Medicine and Biology Magazine, 22(3): 41-48, (2003).
  • [27] Cherenack, K., and Van Pieterson, L., “Smart textiles: Challenges and opportunities”, Journal of Applied Physics, 112, 091301, (2012).
  • [28] Van Langenhove, L., “Smart Textiles for Protection: An Overview, in Smart Textiles for Protection”, Chapman, R., A., Editor, Woodhead Publishing, Cambridge, United Kingdom, 3–33: (2013).
  • [29] Koncar, V., “Introduction to smart textiles and their applications, in Smart Textiles and their Applications”, Koncar, V., Editor., Woodhead Publishing Series in Textiles : Cambridge, United Kingdom, 1–8: (2016).
  • [30] Kongahage, D., and Foroughi, J., “Actuator Materials: Review on Recent Advances and Future Outlook for Smart Textiles”, Fibers, 7: 21, (2019).
  • [31] Kohler, A., R., “Challenges for eco-design of emerging technologies: The case of electronic Textiles”, Materials and Design, 51: 51–60, (2013).
  • [32] Locher, I., Klemm, M., Kirstein, T., and Troster, G., “Design and Characterization of Purely Textile Patch Antennas”, Institute of Electrical and Electronics Engineers Transactions on Advanced Packaging, 29: 777–788, (2006).
  • [33] Salonen, P., and Rahmat Samii, Y., “Textile antennas: Effects of antenna bending on input matching and impedance bandwidth”, Aerospace and Electronic Systems Magazine. 22: 18–22, (2007).
  • [34] Hertleer, C., Tronquo, A., Rogier, H., and Van Langenhove, L., “The Use of Textile Materials to Design Wearable Microstrip Patch Antennas”, Textile Research Journal, 78: 651–658, (2008).
  • [35] Salonen, P., Keskilammi, M., Rantanen, J., and Sydanheimo, L., “A novel Bluetooth antenna on flexible substrate for smart clothing”, In Proceedings of the 2001 Institute of Electrical and Electronics Engineers International Conference on Systems, Man and Cybernetics, E-Systems, and E- Man for Cybernetics in Cyberspace, 2: 789-794, (2001).
  • [36] http://www.ansoft.com/products/hf/hfss/. Access date: 10.09.2021.
  • [37] http://niremf.ifac.cnr.it/tissprop/#refs. Access date: 04.02.2022.
There are 37 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Electrical & Electronics Engineering
Authors

Sangeeta Shekhawat 0000-0001-5605-3476

Sanjay Kumar Singh This is me 0000-0002-4426-3895

Sudhanshu Singh This is me 0000-0001-7835-7809

Ashutosh Tripathi This is me 0000-0002-1765-8795

Project Number NA
Publication Date March 1, 2023
Published in Issue Year 2023 Volume: 36 Issue: 1

Cite

APA Shekhawat, S., Singh, S. K., Singh, S., Tripathi, A. (2023). Electromagnetic Band Gap Based Via-less Jeans Patch Antenna for 5.5GHz WiMAX Application. Gazi University Journal of Science, 36(1), 220-236. https://doi.org/10.35378/gujs.1008125
AMA Shekhawat S, Singh SK, Singh S, Tripathi A. Electromagnetic Band Gap Based Via-less Jeans Patch Antenna for 5.5GHz WiMAX Application. Gazi University Journal of Science. March 2023;36(1):220-236. doi:10.35378/gujs.1008125
Chicago Shekhawat, Sangeeta, Sanjay Kumar Singh, Sudhanshu Singh, and Ashutosh Tripathi. “Electromagnetic Band Gap Based Via-Less Jeans Patch Antenna for 5.5GHz WiMAX Application”. Gazi University Journal of Science 36, no. 1 (March 2023): 220-36. https://doi.org/10.35378/gujs.1008125.
EndNote Shekhawat S, Singh SK, Singh S, Tripathi A (March 1, 2023) Electromagnetic Band Gap Based Via-less Jeans Patch Antenna for 5.5GHz WiMAX Application. Gazi University Journal of Science 36 1 220–236.
IEEE S. Shekhawat, S. K. Singh, S. Singh, and A. Tripathi, “Electromagnetic Band Gap Based Via-less Jeans Patch Antenna for 5.5GHz WiMAX Application”, Gazi University Journal of Science, vol. 36, no. 1, pp. 220–236, 2023, doi: 10.35378/gujs.1008125.
ISNAD Shekhawat, Sangeeta et al. “Electromagnetic Band Gap Based Via-Less Jeans Patch Antenna for 5.5GHz WiMAX Application”. Gazi University Journal of Science 36/1 (March 2023), 220-236. https://doi.org/10.35378/gujs.1008125.
JAMA Shekhawat S, Singh SK, Singh S, Tripathi A. Electromagnetic Band Gap Based Via-less Jeans Patch Antenna for 5.5GHz WiMAX Application. Gazi University Journal of Science. 2023;36:220–236.
MLA Shekhawat, Sangeeta et al. “Electromagnetic Band Gap Based Via-Less Jeans Patch Antenna for 5.5GHz WiMAX Application”. Gazi University Journal of Science, vol. 36, no. 1, 2023, pp. 220-36, doi:10.35378/gujs.1008125.
Vancouver Shekhawat S, Singh SK, Singh S, Tripathi A. Electromagnetic Band Gap Based Via-less Jeans Patch Antenna for 5.5GHz WiMAX Application. Gazi University Journal of Science. 2023;36(1):220-36.