BibTex RIS Kaynak Göster

CSSES-MODULES and CSSES-RINGS

Yıl 2005, Cilt: 18 Sayı: 3, 381 - 390, 13.08.2010

Öz

ABSTRACT

We study the structure of semiperfect, CS-Modules with essential socle. We call the module M CSSES-module if M is semiperfect, CS-module with essential socle. We will call the ring R right CSSES-ring if the right R-module RR is CSSESmodule. In this note among others we prove that [i] If R is right CF and left GINring, then R is QF-ring if and only if R is right CS-ring if and only R is CSSESring. [ii] Every left Kasch right CF-ring is right CSSES-ring. [iii] If R is left Kasch and right IN-ring with equal left and right socles, then R is CSSES-ring.

Kaynakça

  • Anderson F. W. and Fuller K. R., Rings and Categories of Modules, Springer-Verlag , New York, (1974).
  • Camillo V., Nicholson W. K. and Yousif M. F., “Ikeda-Nakayama Rings”, J.Algebra, 226, 001-1010, (2000).
  • Chen J., Ding N. and Yousif M. F., “On a Generalization of injective Rings”, Comm, Algebra , 31(10), 5105-5116, (2003).
  • Chen J. and Ding N., “General Principally Injective Rings”, Comm. Algebra, 27(5), 2097-2116, (1999).
  • Goodearl K. R., Ring Theory : Nonsingular Rings and Modules, Monographs on Pure and Applied Mathematics Vol. 33., Dekker, New York, (1976).
  • Hajarnavis C. R. and Northon N. C., “On Dual Rings and Their Modules”, J.Algebra 93, 253-266, (1985).
  • Ikeda M. and Nakayama T., “On Some Characteristic Properties of Quasi-Frobenius and Regular Rings”, Proc. Am. Math. Soc. 5, 15-19, (1954).
  • Jain S. K. and Lopez-Permouth S. R., “Rings Whose Cyclics are Essentially Embeddable in Projectives”, J. Algebra. , 257-269, (1990).
  • John B., “Annihilator Conditions in Noetherian Rings”, J. Algebra 49, 222-224, (1977).
  • Mohamed S. H. and Müller B. J., Continuous and Discrete Modules, L.M.S. Lecture Notes Vol. 147. Cambridge University Press, Cambridge, UK, (1990).
  • Nam S. B., Kim N. K. and Kim J. Y., “On Simple Singular GP-injective Modules”, Comm. Algebra, 27(5), 1683- , (1999).
  • Nicholson W. K. and Yousif M. F., “On Perfect Simple-injective Rings”, Proc. Am. Math. Soc.,125, 979-985, (1997).
  • Nicholson W. K. and Yousif M. F., Quasi-Frobenius Rings, Cambridge University Press, Cambridge Tracts in Mathematics. 158, (2003).
  • Osofsky B., “a Generalization of Quasi-Frobenius Rings”, J. Algebra ,4, 373-387, (1966).
  • Pardo J. L. G. and Asensio P. A. G., “Rings with Finite Essential Socle”, Proc. Am. Math. Soc. ,125, 971-977, (1997).
  • Pardo J.L.G. and Asensio P.A.G., “Essential Embedding of Cyclic Modules in Projetives”, Trans. Am. Math. Soc. , , 4343-4353, (1997).
  • Wisbauer R., Foundations of Module and Ring Theory, Gordon and Breach: Readiding, MA, (1991).
  • Wisbauer R. ,Yousif M. F. and Zhou Y., “Ikeda-Nakayama Modules”, Beitraege zur Algebra und Geometrie , 43(1), 119, (2002).
  • Yousif M. F and Zhou Y.,”Semiregular, Semiperfect and Perfect Rings Relative to an Ideal”, Rocky M. Jour. Math., (4), (2002).
  • Zhou Y.,”Generalizations of Perfect, Semiperfect, and Semiregular Rings”, Algebra Colloquium, 7:3, 305-318, (2000).
Yıl 2005, Cilt: 18 Sayı: 3, 381 - 390, 13.08.2010

Öz

Bu çalışmada has desteğee sahip yarıtam CS-modüllerin yapısını araştıracağız. Eğer M modülü has desteğe sahip yarıtam CS-modülse M modülüne CSSES-modül denir. Sağ R-modül RR CSSES-modül ise R halkasına sağ CSSES-halkası denir. Bu çalışmada, diğer ispatladıklarımız yanında, aşağıdakilari de ispalayacağız: [i] Eğer R halkası sağ CF ise ve sol GIN-halka ise, o zaman R bir QF-halkadır ancak ve ancak R bir sağ CS-halkadır ancak ve ancak R bir sağ CSSES- halkadır. [ii] Her sol Kasch ve sağ CF-halka sağ CSSES-halkadır. [iii] Eğer R sağ ve sol destekleri eşit sol Kasch sağ IN-halka ise , o zaman R CSSES-halkadır

Kaynakça

  • Anderson F. W. and Fuller K. R., Rings and Categories of Modules, Springer-Verlag , New York, (1974).
  • Camillo V., Nicholson W. K. and Yousif M. F., “Ikeda-Nakayama Rings”, J.Algebra, 226, 001-1010, (2000).
  • Chen J., Ding N. and Yousif M. F., “On a Generalization of injective Rings”, Comm, Algebra , 31(10), 5105-5116, (2003).
  • Chen J. and Ding N., “General Principally Injective Rings”, Comm. Algebra, 27(5), 2097-2116, (1999).
  • Goodearl K. R., Ring Theory : Nonsingular Rings and Modules, Monographs on Pure and Applied Mathematics Vol. 33., Dekker, New York, (1976).
  • Hajarnavis C. R. and Northon N. C., “On Dual Rings and Their Modules”, J.Algebra 93, 253-266, (1985).
  • Ikeda M. and Nakayama T., “On Some Characteristic Properties of Quasi-Frobenius and Regular Rings”, Proc. Am. Math. Soc. 5, 15-19, (1954).
  • Jain S. K. and Lopez-Permouth S. R., “Rings Whose Cyclics are Essentially Embeddable in Projectives”, J. Algebra. , 257-269, (1990).
  • John B., “Annihilator Conditions in Noetherian Rings”, J. Algebra 49, 222-224, (1977).
  • Mohamed S. H. and Müller B. J., Continuous and Discrete Modules, L.M.S. Lecture Notes Vol. 147. Cambridge University Press, Cambridge, UK, (1990).
  • Nam S. B., Kim N. K. and Kim J. Y., “On Simple Singular GP-injective Modules”, Comm. Algebra, 27(5), 1683- , (1999).
  • Nicholson W. K. and Yousif M. F., “On Perfect Simple-injective Rings”, Proc. Am. Math. Soc.,125, 979-985, (1997).
  • Nicholson W. K. and Yousif M. F., Quasi-Frobenius Rings, Cambridge University Press, Cambridge Tracts in Mathematics. 158, (2003).
  • Osofsky B., “a Generalization of Quasi-Frobenius Rings”, J. Algebra ,4, 373-387, (1966).
  • Pardo J. L. G. and Asensio P. A. G., “Rings with Finite Essential Socle”, Proc. Am. Math. Soc. ,125, 971-977, (1997).
  • Pardo J.L.G. and Asensio P.A.G., “Essential Embedding of Cyclic Modules in Projetives”, Trans. Am. Math. Soc. , , 4343-4353, (1997).
  • Wisbauer R., Foundations of Module and Ring Theory, Gordon and Breach: Readiding, MA, (1991).
  • Wisbauer R. ,Yousif M. F. and Zhou Y., “Ikeda-Nakayama Modules”, Beitraege zur Algebra und Geometrie , 43(1), 119, (2002).
  • Yousif M. F and Zhou Y.,”Semiregular, Semiperfect and Perfect Rings Relative to an Ideal”, Rocky M. Jour. Math., (4), (2002).
  • Zhou Y.,”Generalizations of Perfect, Semiperfect, and Semiregular Rings”, Algebra Colloquium, 7:3, 305-318, (2000).
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Mathematics
Yazarlar

Abdurzak Leghwel Bu kişi benim

Abdullah Harmancı

Yayımlanma Tarihi 13 Ağustos 2010
Yayımlandığı Sayı Yıl 2005 Cilt: 18 Sayı: 3

Kaynak Göster

APA Leghwel, A., & Harmancı, A. (2010). CSSES-MODULES and CSSES-RINGS. Gazi University Journal of Science, 18(3), 381-390.
AMA Leghwel A, Harmancı A. CSSES-MODULES and CSSES-RINGS. Gazi University Journal of Science. Ağustos 2010;18(3):381-390.
Chicago Leghwel, Abdurzak, ve Abdullah Harmancı. “CSSES-MODULES and CSSES-RINGS”. Gazi University Journal of Science 18, sy. 3 (Ağustos 2010): 381-90.
EndNote Leghwel A, Harmancı A (01 Ağustos 2010) CSSES-MODULES and CSSES-RINGS. Gazi University Journal of Science 18 3 381–390.
IEEE A. Leghwel ve A. Harmancı, “CSSES-MODULES and CSSES-RINGS”, Gazi University Journal of Science, c. 18, sy. 3, ss. 381–390, 2010.
ISNAD Leghwel, Abdurzak - Harmancı, Abdullah. “CSSES-MODULES and CSSES-RINGS”. Gazi University Journal of Science 18/3 (Ağustos 2010), 381-390.
JAMA Leghwel A, Harmancı A. CSSES-MODULES and CSSES-RINGS. Gazi University Journal of Science. 2010;18:381–390.
MLA Leghwel, Abdurzak ve Abdullah Harmancı. “CSSES-MODULES and CSSES-RINGS”. Gazi University Journal of Science, c. 18, sy. 3, 2010, ss. 381-90.
Vancouver Leghwel A, Harmancı A. CSSES-MODULES and CSSES-RINGS. Gazi University Journal of Science. 2010;18(3):381-90.